Development and Training of a Knowledge-based Workforce for the Intelligent Buildings and Smart Home

A CABA WHITE PAPER

Helen Heneveld (White Paper Chair)
Bedrock Learning, Inc.

Larry Chang
Laney College - BEST Center

Ron Bernstein
LonMark International

Jeff Gardner
ESPA (The Electronic Systems Professional Alliance)

JB Groves III
Wharton County Junior College

Connect to what’s next™

www.caba.org
Development and Training of a Knowledge-based Workforce for the Intelligent Buildings and Smart Home

A CABA White Paper

Authors
Helen Heneveld
Bedrock Learning, Inc.

Jeff Gardner
ESPA (The Electronic Systems Professional Alliance)

Larry Chang
Laney College - BEST Center

JB Groves III
Wharton County Junior College

Ron Bernstein
LonMark International

Working Group
Blerim Qela
Algonquin College

Dean Ford
Automation Federation

Andrea Linsky
British Columbia Institute of Technology

Carlos Santamaria
CEES-Advisors

Robert Clark
College of DuPage

Scott Bachrach
Complete Learning Solutions

Jeff Gardner
ESPA (The Electronic Systems Professional Alliance)

Bryan Allen
ETA International

Teresa Maher
ETA International

Leo Salemi
George Brown College

Chris Miller
Heartland Community College

Len Pettis
Irvine Valley College

Mehdi Sheikhzadeh
Lambton College

Larry Chang
Laney College - BEST Center

Ron Bernstein
LonMark International

Richard Laszlo
QUEST

Bruce Noble
Rio Hondo Community College District

Robert Lane
Robert H. Lane and Associates Inc.

Bill Humber
Seneca College

Steve Hoiberg
Siemens Industry, Inc.

David Katz
Sustainable Resources Management

Morad Atif
Texas A&M University

JB Groves III
Wharton County Junior College

Working Group: Individuals who either contributed ideas and input into the direction of paper or reviewed the final draft.
Sub-Committee
Ken Wacks (Sub-Committee Chair)
Ken Wacks Associates

Derek Cowburn
Lumen Cache Inc.

Michael Walther
behome247

Brittany Hack
Consultant

Dilip Sarangan
Frost & Sullivan

Konkana Khaund
Frost & Sullivan

Alex Glaser
Harbor Research

Heather Knudsen
National Research Council

Lauren Callaway
Navigant Research

Marek Dziedzic
Public Services and Procurement
Canada

Raphael Imhof
Siemens Industry, Inc.

David Katz
Sustainable Resources
Management

Nikiforos Panorios
Synergy

Sub-Committee: Under the
direction of the Sub-Committee
Chair, this formal committee
reviewed and approved both the
initial white paper proposal and
final draft.
ABOUT CABA
The Continental Automated Buildings Association (CABA) is an international not-for-profit industry association, founded in 1988, and dedicated to the advancement of intelligent home and intelligent building technologies. The organization is supported by an international membership of over 360 organizations involved in the design, manufacture, installation and retailing of products relating to “Internet of Things, M2M, home automation and intelligent buildings”. Public organizations, including utilities and government are also members. CABA’s mandate includes providing its members with networking and market research opportunities. CABA also encourages the development of industry standards and protocols, and leads cross-industry initiatives. CABA’s collaborative research scope evolved and expanded into the CABA Research Program, which is directed by the CABA Board of Directors. The CABA Research Program’s scope includes white papers and multi-client market research in both the Intelligent Buildings and Connected Home sectors. www.caba.org

ABOUT CABA’S INTELLIGENT BUILDINGS COUNCIL (IBC)
The CABA Intelligent Buildings Council works to strengthen the large building automation industry through innovative technology-driven research projects. The Council was established in 2001 by CABA to specifically review opportunities, take strategic action and monitor initiatives that relate to integrated systems and automation in the large building sector. The Council’s projects promote the next generation of intelligent building technologies and incorporate a holistic approach that optimizes building performance and savings. www.CABA.org/ibc

ABOUT CABA’S CONNECTED HOME COUNCIL (CHC)
Established in 2004, the CABA Connected Home Council initiates and reviews projects that relate to connected home and multiple dwelling unit technologies and applications. Connected homes intelligently access wide area network services such as television and radio programming, data and voice communications, life safety and energy management/control information and distribute them throughout the home for convenient use by consumers. The Council also examines industry opportunities that can accelerate the adoption of new technologies, consumer electronics and broadband services within the burgeoning connected home market. www.CABA.org/connected-home-council

DISCLAIMER
This white paper was developed and published by CABA for the industry with permission from the authors. CABA expresses its appreciation to the authors and contributors for making this white paper available to be included as part of CABA’s Members Library and CABA’s Public Library. CABA, nor any other person acting on their behalf of CABA assumes any liability with respect to: the use of, or for damages resulting from the use of, any information, equipment, product, method or process disclosed in this white paper.

This CABA White Paper and other industry research reports can be found in CABA’s Members Library and CABA’s Public Library at: www.caba.org. This information is also keyword searchable. Contact the CABA office if you do not have the passwords to access this material by email caba@cba.org or phone 888.798.CABA [2222] or 613.686.1814 (x228). CABA encourages you to share this white paper with others in your organization and the industry. Permission is not required from CABA to share this white paper, as long as proper acknowledgment is provided to CABA.

PUBLISHED
October 2017
TABLE OF CONTENTS

1: INTRODUCTION ... 7
GOAL AND OBJECTIVES .. 7
TARGET AUDIENCE ... 7
SCOPE, LIMITATIONS, AND DEFINITIONS .. 8

SECTION 2: IB/CH INDUSTRY LANDSCAPE ... 10
Market for Trained Professionals .. 11

SECTION 3: EDUCATION AND TRAINING OPTIONS ... 15
The Nature of Associations ... 15
1. ACADEMIC CHANNELS ... 16
2. Non-ACADEMIC CHANNELS ... 16
Academic Channels .. 17
Non-Academic Channels ... 17
Accreditations and Certifications ... 18
Summary ... 19

SECTION 4: CURRENT IB/CH INDUSTRY EDUCATION AND TRAINING .. 19

SECTION 5: OPPORTUNITIES AND SUGGESTIONS ... 22
OVERALL Suggestions ... 22
DEVELOP Information to Share ... 22
OUTREACH to Academic and Other Training Channels ... 22
ACTIONS for the Industry ... 22

SECTION 6: IB/CH INDUSTRY TRAINING RESOURCES ... 23
APPENDIX A: ASSOCIATIONS ... 24
APPENDIX B: PUBLICATIONS .. 26
APPENDIX C: INDUSTRY RESEARCH SOURCES .. 27
APPENDIX D: IB/CH INDUSTRY TRAINING RESOURCES ... 28
APPENDIX E: EXAMPLES OF INDUSTRY EDUCATION AND TRAINING ... 32
1. AEE – Association of Energy Engineers: Atlanta, GA USA ... 32
2. Algonquin College: Nepean, ON Canada .. 33
3. APT College: Carlsbad, CA USA ... 34
4. Barry Career and Technical Education Center: Westbury, NY USA .. 35
5. British Columbia Institute of Technology: Burnaby, BC Canada .. 36
6. Canadian Institute for Energy Training (CIET) / International Institute for Energy Training (IIET): Toronto, ON CANADA ... 37
APPENDIX F: ESPA FLYER – WHY PURSUE A CAREER IN ELECTRONIC SYSTEMS

WHY PURSUE A CAREER IN ELECTRONIC SYSTEMS? An Introduction to the Industry

Technology and the World We Live In

What Do We Mean by “Electronic Systems”?

What Are the Jobs? Where Are the Jobs?

How Fast Can I Advance?

What Skills are Needed?

Where Do I Start?

Who is ESPA? What Does the Certification Tell Potential Employers?

Where Can I Learn More?

ESPA FOUNDERS

ESPA INDUSTRY PARTNERS

7. Central Nine Career Center Adult Education: Greenwood, IN USA ... 37
9. College of the Desert: Palm Desert, CA USA ... 39
10. ETA – International: Greencastle, IN USA ... 41
11. George Brown College: Toronto, ON Canada .. 42
12. Georgia Piedmont Technical College: Clarkston, GA USA ... 43
13. Heartland Community College: Normal, IL USA .. 43
14. InfoComm/AVIXA – Benjamin Franklin Institute of Technology: Boston, MA USA .. 44
15. InfoComm/AVIXA – City College of San Francisco: San Francisco, CA USA ... 44
16. InfoComm/AVIXA – Columbia College: Chicago, IL USA ... 45
17. InfoComm/AVIXA – Full Sail University: Winter Park, FL USA .. 45
18. InfoComm/AVIXA – Sheffield Institute for the Recording Arts: Phoenix, AZ USA ... 46
19. InfoComm/AVIXA – Valencia College: Orlando, FL USA ... 46
20. Laney College – Building Automation Systems (BAS): Oakland, CA USA ... 47
21. Lincoln Technical Institute: Union, NJ USA ... 47
22. LonMark Building Automation Program: Santa Clara, CA USA ... 48
23. Maverick Technical Institute: Nashua, NH USA ... 49
24. Milwaukee Area Technical College: Milwaukee, WI USA .. 50
25. Mt. San Antonio College: Walnut, CA USA .. 51
26. Orange Technical College: Orlando, FL USA ... 51
27. ProMedia Training: Fort Lauderdale, FL USA ... 52
28. Seneca College – MBT Program: North York, ON Canada ... 53
29. Wharton County Junior College: Wharton, TX USA ... 54

© Continental Automated Buildings Association 2017
Published: October 2017
Development and Training of a Knowledge-based Workforce for the Intelligent Buildings and Smart Home

APPENDIX G: ESPA UPDATE – ELECTRONIC SYSTEMS INDUSTRY WORKFORCE

ELECTRONIC SYSTEMS INDUSTRY WORKFORCE UPDATE OCTOBER 2016

INTRODUCTION

DEFINITION OF TERMS

INDUSTRY GROWTH

DEMAND FOR QUALIFIED WORKERS

NEXT STEPS

CONCLUSION

APPENDIX H: INFOCOMM INT’L/AVIXA FAST FACTS A/V TECHNICIANS 2017

APPENDIX I: INFOCOMM INTERNATIONAL/AVIXA CAREER-TRAINING MATRIX 2017

REFERENCES
1: INTRODUCTION

It is widely accepted there is a significant shortage of trained professionals in the intelligent building and connected home industries. This White Paper addresses this issue and herein the industry is referred to as the "IB/CH industry.

Strengthening collaboration between the IB/CH industry and educational channels is paramount and can be summed up by a quote from Ken Sinclair, Automated Buildings.com, "People are our assets, not technology."

GOAL AND OBJECTIVES

Given the rapid growth in building and home automation, there is urgent need for trained and qualified personnel. Educational programs, based in either vocational training or academic instruction in colleges and universities, are relatively new or just emerging and are seeking validation.

Builders, property managers, service providers and installation companies require people to design and integrate technologies such as networking, communications, lighting, security, fire and safety equipment, audio/video, Heating Ventilation and Air-Conditioning (HVAC), air quality monitoring, energy consumption and Programmable Logic Controllers (PLC). They need professional workers familiar with a centralized approach, who can design, control and manage a building from an interface that provides building-wide efficiency, cost-effective operations, information sharing, and user-friendly control.

IB/CH buildings contribute and can participate in the Smart Grid and Smart City efforts so it is imperative that the educational efforts reflect the changing social, economic and environmental objectives.

The objectives of this paper are to:

- **Enhance alignment of educational programs at all levels of training; vocational, community colleges, and universities, with the IB/CH industry needs**
- **Identify the nature and extent of gaps between the building and home automation market needs and existing educational providers**
- **Offer suggestions to fill the above gaps, bridge partnerships and improve alignment between IB/CH industry and educational providers**

TARGET AUDIENCE

The intended audiences of this paper include:

- **Educational providers:** high school, (grades 10 to 12), vocational training centers, community colleges and universities
- **Education, certification and accreditation bodies**
- **Public agencies related to education and training programs**
- **IB/CH industry groups and associations**
- **Employers in the IB/CH industry**
- **Individuals looking to improve their knowledge about building and home automation**
SCOPE, LIMITATIONS, AND DEFINITIONS

The purpose of this paper is to provide a snapshot of the IB/CH industry’s training needs, share some current initiatives in education, and suggest actions to help meet the needs for workers in the IB/CH industry.

This paper does not compare or rank existing educational program, and/or related practices, but highlights examples to help foster interest and growth in training for the building and home automation industry.

BAS, Building Automation System – refers to the system monitoring and controlling devices inside a building.

Connected Home – term used to describe a residence with integrated/automated systems which allows various subsystems and devices to communicate with each other and with outside services. These may include audio, video, data, energy management, and various control devices and protocols. In recent years the word “smart” has been applied to such things as appliances, cars, and the electrical grid as well. Widespread network connectivity in just about any kind of device (the Internet of Things) has made this concept even more pervasive.

EST, Electronic Systems Technician – individual who installs, upgrades, and services a variety of residential and commercial electronic systems including:

- Audio/Video Systems
- Computer Networking
- Lighting
- Control Systems
- Security and Surveillance
- Telecom
- Cable & Satellite TV
- Green Technologies (solar, electric car)

Home Automation – refers to an integrated system in the home capable of functioning without direct human interaction, such as automatically turning on or off lights, sprinklers, or music based on a calendar/time schedule or a trigger event such as the detection of motion or sensing low moisture in the ground.

IoT, Internet of Things – refers to devices connected to the Internet that integrate greater computer capabilities, and use data analytics to extract meaningful information

Net Zero Site Energy Building (NZEB) – a building that produces as much energy as it uses when measured at the site. On an annual basis, it produces or consumes as much energy from renewable sources while maintaining an acceptable level of service and functionality. NZEBs can exchange energy with the power grid as long as the net energy balance is zero on an annual basis.
Smart Building – refers to an intelligent space that is operationally more efficient for its owners over the building’s lifecycle. A smart building is typically safer and more comfortable for the occupants resulting in increased productivity.

Smart City – refers to a city that applies new technologies to improve the urban space; interacting with citizens to increase the quality of life. Technology may be applied in different areas such as energy, waste, water, telecommunications, policing and emergency response, education and training, transport, health, social services, housing, environmental services, along with finance and economy. It is projected there will be 88 “smart” cities across the globe by 2025, up from 21 in 2013.

Smart Home – see Connected Home

STEM - acronym for Science, Technology, Engineering and Math; often used when referring to curriculum and educational policy.

Systems Integration – refers to configuring separate and diverse systems such as Audio/Video, security, HVAC, access control, and others so they are controlled through one central system or interface, eliminating the clutter of several individual control devices on the wall.
SECTION 2: IB/CH INDUSTRY LANDSCAPE

With the evolution of smart homes, smart buildings, and smart cities, career opportunities abound given intelligent building construction and implementation of the associated technologies. Consumers and IoT driven lifestyles are driving the market with acceleration. The design, manufacture, and installation of products needed for both intelligent building and smart home automation are exponential. Technology products and services are moving quickly, and there is a strong need for skilled technicians and service providers.

As stated in the 2016 Moving Forward: Findings and Recommendations from the Consultative Council, National Institute of Building Sciences, NIBS, US “... almost all sectors of the building industry have reported a growing shortage of skilled construction workers – in multiple building disciplines and trades, and across states and regions – with a dramatic shortage of workers in key industry trades.” The report goes on to say, “The nation cannot afford to wait any longer to change perceptions of vocational and technical schools. Failure to move quickly will result in a continued loss of skilled workers and potentially undo the decades of work spent improving construction techniques and building safety, as on-the-ground expertise and technical knowledge dissipates when the current workforce retires. Government at all levels should do more to encourage trade apprenticeships, internships and on-the-job training.” The report hits the nail on the head by pointing out, “Building construction, maintenance and operation are no longer just jobs, they are professions... they require professional development and continuing education.”

The proliferation of IoT related to buildings has caused a dramatic shift from stand-alone building systems to an interconnected system of devices and sensors that have the ability to collect and share data within and across buildings. This has created a large opportunity to increase the efficiency, security, productivity, occupancy comfort and profitability of buildings as relevant IoT data can be analyzed remotely and actionable information can be generated.

It is critical that organizations in the building and IoT value chains have a solid understanding of the current state and future direction of the IoT market, as this market is projected by Memoori Business Intelligence Ltd to reach US$76 billion by 2020.
Market for Trained Professionals

New technologies are creating new jobs and careers. Training is needed in STEM-related fields, even starting at the K-12 level. Technologies in need of qualified personnel include:
Intelligent buildings
Smart and connected homes
Sustainable technologies
Photovoltaic and Wind Energy
Energy Monitoring and management
Electric vehicle
Residential electronics systems integration
Security and alarm
HVAC integration
Network and IoT security
To meet the demand for a trained and qualified workforce, the number of students and instructors at educational and training initiatives need to be expanded and revised to recruit and retain student employees qualified to do this type of work.
Surveys, meetings, and focus groups conducted by British Columbia Institute of Technology identified demand for individuals with complementary skills in building controls and energy management, but rarely are both found as a complementary skill set. Professionals are needed by engineering design and commissioning firms, construction, facilities management and operations companies, real estate and property management companies, and control companies.

In the residential market, key indicators for the industry emphasize the many opportunities and strong growth creating demand for a trained workforce;

- **Growth in construction drives growth in electronic systems.** Housing starts are estimated to be 1.2 million in 2016, the highest since before the recession. 1
- **Overall installed home technologies are annually around $20 billion.** 2
- **Residential technologies are seeing the fastest growth worldwide.** U.S. is leading the way, where smart home revenues are expected to triple by 2021. 3
- **In each of the last two years, both commercial and residential integrators reported that they expect their staffing to increase an average of 14% per year.** 2, 4
- **Most commercial integrators will be awarding pay increases of 5-8% across the board this year, the highest increases reported since 2005.** 4
- **Residential integrators report even higher compensation increases, averaging 10% from 2013 to 2015.** 2, 6
- **The average annual base compensation for an experienced Electronic Systems Technician (EST) in both residential and commercial work is $44,000 to $48,000, and most are seeing a lot of overtime as well as incentive pay.** 2, 4

See references at end of paper – what do #s refer to end of bullets
SECTION 3: EDUCATION AND TRAINING OPTIONS

The ways to acquire training and education in preparation for a career in electronic systems and building automation are as diverse as the systems, career paths, and business models found in this broad industry category. Unlike some career paths such as radiologist or automotive repair technician, few well-defined programs exist that directly correspond to a particular job description in the intelligent building or smart home industries.

There are training options both within the academic channel and outside of it, see Figure 1. This is because many technicians, programmers, and even system designers may actually start as entry-level technicians and gain knowledge and experience on the job, leading them to higher level positions without formal academic degrees.

The Nature of Associations
An industry association, can also be known as an industry trade group, business association, or industry body. This is an organization founded and formed to unite and inform people who work or are tied to the same occupation or specific industry, for these purposes the connected home. Many are not-for-profit organizations governed by bylaws and directed by officers who are also members, to promote those common interests and to further the connected home profession, the interests of the individuals engaged in that profession and the public interest with their common purpose and formal structure. Some associations also provide entry level or other levels of industry training and certification.

See Appendix D for IB/CH Industry Training Resources and Appendix E for Examples of IB/CH Industry Education.
Training and Education Serving the Intelligent Building and Connected Home Industries

1. Academic Channels

<table>
<thead>
<tr>
<th>Notes</th>
<th>Focus</th>
<th>Areas Taught</th>
<th>Credentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Public & Private High Schools</td>
<td>STEM and College Prep</td>
<td>Math, Physics, Core Curriculum</td>
<td>HS Diploma</td>
</tr>
<tr>
<td>b. High School Career Centers</td>
<td>Directed to those not heading to college</td>
<td>Skilled Trades, Dual Credit, Robotics</td>
<td>HS Diploma, Industry Certifications</td>
</tr>
<tr>
<td>c. Post-Secondary Trade and Technical Schools</td>
<td>1 year for Certificate 2 years for Associates</td>
<td>Skilled Trades, Hands-on</td>
<td>Associates Degree, Industry Certifications</td>
</tr>
<tr>
<td>d. Community Colleges and Universities</td>
<td>1 to 4 years depending on the program</td>
<td>Numerous programs offered</td>
<td>Associate and Bachelor Degrees, Industry Certifications</td>
</tr>
<tr>
<td>e. University Graduate Programs</td>
<td>1 year and above</td>
<td>Numerous programs offered</td>
<td>Architecture, Electrical Engineering, Masters Degree and Phd.</td>
</tr>
</tbody>
</table>

2. Non-Academic Channels

<table>
<thead>
<tr>
<th>Notes</th>
<th>Focus</th>
<th>Areas Taught</th>
<th>Credentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Industry Associations</td>
<td>Live - classroom Live - hands-on Online</td>
<td>Entry-level and those already in the industry</td>
<td>Industry certifications</td>
</tr>
<tr>
<td>b. Manufacturer Training</td>
<td>Live - classroom Live - hands-on Online</td>
<td>Technologies and techniques specific to products</td>
<td>Manufacturer Credentials</td>
</tr>
<tr>
<td>c. Independent Training Companies</td>
<td>Live - classroom Live - hands-on Online</td>
<td>Entry-level and those already in the industry</td>
<td>Certificate of Completion, Industry certifications</td>
</tr>
<tr>
<td>d. Self-Study</td>
<td>Books Online</td>
<td>Entry-level and those already in the industry</td>
<td>All levels, May be pointed to industry certifications</td>
</tr>
<tr>
<td>e. Military</td>
<td>Military service provides discipline</td>
<td>Skills learned dependent on position and/or responsibilities</td>
<td>Rank and honorable discharge</td>
</tr>
<tr>
<td>f. Workforce Agencies</td>
<td>May not do training but contract with schools or other entities</td>
<td>Help displaced workers find employment</td>
<td>Basic electronic systems or IT</td>
</tr>
</tbody>
</table>

Figure 1: Training Education Options in the US and CANADA
Academic Channels

The academic education channels cover a broad range of topics that apply to the IB/CH industry.

Public and Private High Schools – Students are prepared for careers in technology through the study of math and science at all grade levels. In high school, an emphasis on STEM curriculum (Science, Technology, Engineering and Math) provides the foundation for virtually all areas of technology and innovation.

High School Career Centers – These specialized schools offer training aimed at immediate employment after high school with marketable skills that can provide a living wage and a gateway to success in a wide variety of careers. Career centers offering programs in electronics, robotics, computer tech and IT will serve both college-bound students and those more likely to go to work directly after graduation. These schools play a key role in preparing entry-level technicians for success on the job, and often offer recognized certifications to verify the student’s mastery of a specific body of knowledge.

Post-Secondary Trade and Technical Schools – These schools, both public and for-profit, provide more comprehensive training and certification providing the student with a stronger skill set to take into the workforce. Programs range from one to four semesters.

Community Colleges and Universities – These schools offer even deeper, and more advanced, education in architecture, electronics, computer science, mechanical technology (including heating and air conditioning), engineering technology, project management and more. Degrees range from certificate programs to associate and bachelor degrees ranging from 1 to 4 years depending on the program.

University Graduate Programs – These schools and programs vary depending on the specific program. Engineering programs can cover control systems, some automation, and building systems. Other graduate level programs may focus more on research related to controls and automation systems as well as advanced buildings. Program length starts at one year.

Non-Academic Channels

The non-academic channels are diverse and range from industry associations to private companies.

Industry Associations – the most widely recognized and comprehensive training available outside of public, private, and for-profit schools is offered by the major industry trade associations. Their training usually ranges from introductory to very advanced, and is typically brand-neutral. They may offer and administer industry certifications at various levels, which are either gateway (no renewal) or professional (renewable through continuing education credits).

Manufacturer Training – To assist in learning their products, manufacturers offer training direct at their facilities and through distributors or rep firms. Manufacturer training is beneficial because it is specific to the actual equipment used on projects, it provides the product knowledge needed in the field.

Independent Training Companies – Training is available from for-profit training companies who specialize in fast-track sessions aimed at a specific skill or credential. They may offer live, online, and hands-on training providing a flexible choice for the independent learner.
Self-Study – It is possible to gain knowledge and successfully prepare for some industry certifications using books and online resources. Although this route is not preferred because it typically lacks the hands-on activities provided in a more formal training environment, a candidate may still be able to earn certifications in networking, electronic systems, and other specific topics by studying books and taking online courses.

Military – Valuable skills can be gained in military service, especially in IT, electronics, RF, and project management. These skills, along with the discipline of military service, serve veterans well as they re-enter the civilian workforce with opportunities in the IB/CH industry.

Workforce Agencies – In most states and provinces, as well as some municipalities, there are agencies specializing in finding employment for those who have been displaced from jobs, are underemployed, or just want a career change. These agencies typically don’t do the actual retraining, but frequently contract schools or other entities to deliver job-specific training. This is usually in the areas of basic electronic systems work or IT.

Accreditations and Certifications
The credentials, certifications, and degrees applicable to the IB/CH industry are as diverse as the industry itself. Often on-the-job training and orientation are necessary due to the many specialized technologies and concepts. Unlike other standardized career paths such as computer networking or radiology, the actual work done in the IB/CH industry varies greatly from employer to employer and project to project. Here is a quick snapshot of typical credentials which may be recognized by employers in this sector.

- **High School Diploma or High School Graduation Equivalency Diploma, GED**
- **High School Diploma (Career Center, Focus on Technology)**
 Example: Electronics or Computer Tech program which includes curriculum pointing to the electronic systems industry, IT, automation, or robotics.
- **Diploma/Advanced Diploma program (Accredited Tech School, Community College)**
 Examples: Post-secondary tech school or community college non-degree program lasting 1-2 years; in Canada, Advanced Diploma programs often lasting 3 years. Diplomas can earn credits towards a degree.
- **Certificate Program (Accredited Tech School, Community College)**
 Example: Post-secondary tech school or community college non-degree program that lasts 1-2 years (similar to a diploma); certificates are for-credit and can count towards an associate’s degree.
- **Associates Degree (Tech School, Community College, or University)**
 Examples: Typical two-year degree, including general required knowledge courses. May be in Electronic Technology, IT, HVAC, Building Automation, Project Management, or other related fields.
- **Bachelor’s Degree (4-year College or University)**
 Examples: Typical four-year degree such Computer Science, Electronics Technology, Mechanical Engineering, Electrical Engineering, Architecture.
- **Graduate Degree (Engineering, Architecture, Electrical Engineering, IT etc.)**
 Examples: Post-Grad degrees in Computer Science, Mechanical Engineering, Electrical Engineering, Architecture
- **Certificate of Course Completion (School or Online)**
 Examples: Post-secondary tech school offering short-term training but not a Degree or Industry Certification, or online classes which require passing assessments to finish course and receive certificate.
- **Industry Association Certification (Self-study or at a School)**
Examples; Earning Recognized Industry Certification such as ESPA, CompTIA, CEDIA, InfoComm/AVIXA, or ISA either through self-study, online classes, fast-track training, or at a school.

Summary
There are many ways to acquire skills related to the IB/CH industry, but unlike some career paths they are not very well defined. Part of this problem lies in the general lack of awareness of what the industry does and what skills are needed. Few institutions have programs aimed specifically at the IB/CH industry and curriculum varies greatly. These offerings are expanding with new programs, accreditations, and certifications.

SECTION 4: CURRENT IB/CH INDUSTRY EDUCATION AND TRAINING

Existing training programs are expanding, and new training programs for professionals are emerging as awareness of career opportunities in the IB/CH industry become known. Educational opportunities are diverse, ranging from accredited academic schools to independent training companies. In addition, industry associations offer training for their members and non-members and associations are listed in Appendix A.

Several training and education resources, and by no means a complete list, are listed in Appendix D. Further information on some of these academic/education opportunities can be found in Appendix E and are listed in the following summary table for reference.
<table>
<thead>
<tr>
<th>#</th>
<th>Institution</th>
<th>Delivery</th>
<th>Target Audience</th>
<th>Focus Areas</th>
<th>Credentials</th>
<th>Length</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AEE – Association of Energy Engineers</td>
<td>X X X X X X X</td>
<td>High School</td>
<td>Commercial Application, Energy Management, Energy Principles</td>
<td></td>
<td>8-12 weeks course, 48 hours total plus labs</td>
<td>https://www.aeecenter.org/i4a/pages/</td>
</tr>
<tr>
<td>2</td>
<td>Algonquin College</td>
<td>X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td>3rd yr elective course, school year calendar</td>
<td>https://www.algonquincollege.com</td>
</tr>
<tr>
<td>3</td>
<td>APT College</td>
<td>X X</td>
<td>X X</td>
<td>X X X X</td>
<td></td>
<td>Varies, open only to industry personnel</td>
<td>www.scb.edu</td>
</tr>
<tr>
<td>4</td>
<td>Barry Tech Career and Tech Education Center</td>
<td>X X X X X X X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td>1-2 years for HS juniors or seniors</td>
<td>https://www.nasabrances.org/Page/448</td>
</tr>
<tr>
<td>5</td>
<td>British Columbia Institute of Technology</td>
<td>X X X X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td>3 Years – 6 Semesters, Post-Secondary program</td>
<td>http://www.bct.ca/bcem</td>
</tr>
<tr>
<td>6</td>
<td>Canadian Institute for Energy Training</td>
<td>X X X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td>Short-term trainings for professionals</td>
<td>www.canada.com</td>
</tr>
<tr>
<td>7</td>
<td>Central Nine Career Center Adult Education</td>
<td>X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td>10 weeks - 2 nights a week</td>
<td>http://central9.k12.in.us/</td>
</tr>
<tr>
<td>8</td>
<td>College of DuPage - Building Automation</td>
<td>X X X X X X X X</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td>1-year community college certificate</td>
<td>http://coo.edu/programs/hvacr/</td>
</tr>
<tr>
<td>10</td>
<td>ETA - International</td>
<td>X X</td>
<td>X X X X</td>
<td>X X X X</td>
<td></td>
<td>Preparation varies for certification exam</td>
<td>www.eta-i.org</td>
</tr>
<tr>
<td>11</td>
<td>George Brown College</td>
<td>X X X</td>
<td>X X X X</td>
<td>X X X X</td>
<td></td>
<td>3 Years – 6 Semesters, Post-Secondary program</td>
<td>http://www.georgebrown.ca/1171-2015-2016/</td>
</tr>
<tr>
<td>12</td>
<td>Georgia Piedmont Technical College</td>
<td>X X X X X X X X</td>
<td>X X X X</td>
<td>X X X X</td>
<td></td>
<td>2-year diploma and degree</td>
<td>http://www.georgebrown.ca/1171-2015-2016/</td>
</tr>
<tr>
<td>13</td>
<td>Heartland Community College</td>
<td>X X X X X X X X</td>
<td>X X X X X X X X X X</td>
<td>X X X X</td>
<td></td>
<td>Varies depending on program</td>
<td>http://www.heartland.edu/calib/industrials/</td>
</tr>
<tr>
<td>14</td>
<td>InfoComm AVIXA - Ben Franklin Inst of Tech</td>
<td>X X X X X X X X</td>
<td>X X X X X X X X X X</td>
<td>X X X X</td>
<td></td>
<td>2-year computer technology w/ AV track</td>
<td>http://www.bfi.edu/uv/programs/computer-technology/av-technology/av-technology/</td>
</tr>
<tr>
<td>15</td>
<td>InfoComm AVIXA - City College San Francisco & Laney College</td>
<td>X X X X X X X X X X X X X X X X</td>
<td>X X X X X X X X X X X X</td>
<td>X X X X</td>
<td></td>
<td>To be offered in 2018</td>
<td>https://www.cosf.edu/</td>
</tr>
<tr>
<td>#</td>
<td>Institution</td>
<td>Delivery</td>
<td>Target Audience</td>
<td>Focus Areas</td>
<td>Credentials</td>
<td>Length</td>
<td>Website</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td>InfoComm AVIXA - Columbia College</td>
<td>X</td>
<td>Live Classroom</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>InfoComm AVIXA - Full Sail University</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>InfoComm AVIXA - Sheffield Inst Record Arts</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>18</td>
<td>InfoComm AVIXA - Valencia College</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>Laney College - Building Automation Systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>21</td>
<td>Lincoln Technical Institute</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>22</td>
<td>LonMark Building Automation Program</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>23</td>
<td>Maverick Technical Institute</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>24</td>
<td>Milwaukee Area Technical College</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>25</td>
<td>Mt. San Antonio College</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>26</td>
<td>Orange Technical College</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>27</td>
<td>ProMedia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>28</td>
<td>Seneca College - MBT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>29</td>
<td>Wharton County Junior College</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

© Continental Automated Buildings Association 2017
Published: October 2017
SECTION 5: OPPORTUNITIES AND SUGGESTIONS

Through the research and work on this White Paper, numerous ideas and suggestions emerged to feed the industry with qualified workers and align training channels with today's IB/CH industry.

By "sharing the story," the industry can help close the skills gap and help build the workforce of next-generation automation and process control professionals in the IB/CH industry markets.

OVERALL Suggestions
- Strengthen collaboration between the industry and training providers
- Develop partnerships between the industry and training providers
- Promote general public knowledge of the IB/CH industry, the diverse career field, and opportunities

DEVELOP Information to Share
- Identify specific career paths within industry segments, positions/titles, responsibilities, and pay range
- Create a standard set of learning objectives, foundational principles, and operational best practices for a knowledge-based workforce to address training deficiencies
- Identify the current number of building control technicians in the U.S. and Canada
- Perform a workforce gap analysis

OUTREACH to Academic and Other Training Channels
- Engage IB/CH industry professionals on academic advisory boards
- Emphasize STEM curriculum and raise awareness of building and residential automation industries
- Increase awareness and focus of electronics and IT training on career opportunities
- Encourage HVAC, electronics and IT training programs to educate about building systems and cultivate systems-level thinking by sharing and aligning curriculum
- Promote online delivery methods for teaching foundational skills and make this training readily available to as many interested parties and students as possible to prepare for hands-on learning
- Ensure training incorporates the knowledge needed in all phases of a building's life: design, construction, commissioning, and ongoing operation
- Professional development by Intermediate School District regional training offerings and community college instructors

ACTIONS for the Industry
- Develop a plan for outreach and marketing around building automation as a career
- Educate and promote how intelligent buildings can support energy and GHG conservation
- Manufacturers work with industry associations to help them raise awareness of career opportunities
- Manufacturers direct people to foundational training offered by trade associations and emphasize the critical importance of networking skills
- Build a broad coalition of industry stakeholders to address training needs specific to intelligent building control to help track changing technologies and innovations
- Engage with military, government, and workforce agencies to promote awareness and career opportunities
- Create co-op opportunities, internships, and apprenticeship programs
- Create outreach program for prospective K-12 students for after school programs and competitions to further the student education and interest in career selection of IB/CH careers
- Build awareness of employee workforce retraining grants and facilitate access to them
SECTION 6: IB/CH INDUSTRY TRAINING RESOURCES

Relevant lists and items are included in the Appendices.

A. Associations
B. Publications
C. Industry Research Sources
D. IB/CH Industry Training Resources
E. Examples of Industry Education and Training
 As listed and shown in Section 6 Summary Table
F. ESPA Flyer – Why Pursue a Career in Electronic Systems, March 2017 DRAFT
G. ESPA Update – Electronic systems Industry Workforce Update, October 2016
H. InfoComm International/AVIXA FAST FACTS A/V Technicians 2017 Infographic
I. InfoComm International/AVIXA Career-Training Matrix 2017
APPENDIX A: ASSOCIATIONS

AEE – Association of Energy Engineers
Association providing information and networking in the dynamic fields of energy engineering, energy management, renewables, power generation, energy services, sustainability, and related areas. Membership includes over 18,000 professionals in more than 100 countries is widely recognized energy certification programs.
www.aeecenter.org

AIA – The American Institute of Architects
An industry association with over 90,000 members that advocates the value of architecture and provides architects the resources they need to do their best work.
www.aia.org

ASHRAE – American Society of Heating Refrigeration and Air Conditioning Engineers – an industry association focuses on all things related to buildings
www.ashrae.org

ATE – Advanced Technological Education
The National Science Foundation’s Advanced Technological Education (ATE) program supports the development of innovative approaches for educating highly skilled technicians for the industries that drive the nation’s economy.
www.atecenters.org

BACnet International
BACnet International is an industry association that facilitates the successful use of the BACnet protocol in building automation and control systems through interoperability testing, educational programs and promotional activities.
www.bacnetinternational.org/page/the_bacnet_institute

CABA - Continental Automated Buildings Association
An international not-for-profit industry association dedicated to the advancement of intelligent home and intelligent building technologies.
www.caba.org

CEDIA – Custom Electronic Design and Installation Association
Serves the residential systems industry with events, training, certification, standards, and member services. ESC, ESC-T, ESC-D, and ESC-N certifications.
www.cedia.net – industry site for members and other industry professionals
www.cedia.org – out-facing site for architects, builders, homeowners, and the press

CompTIA – Computer Technology Industry Association
Serves and promotes the IT industry through standards, publications, training, and certifications.
www.comptia.org

CSI - The Construction Specifications Institute
A national association of more than 9,500 professionals dedicated to improving the communication and construction information. Members are experts in building construction and the materials used therein.
www.csinet.org

CTA – Consumer Technology Association
Serves the consumer electronics industry with the largest trade show of its kind, standards, and government affairs.
www.cta.tech

ESA – Electronic Security Association
Serves the alarm and security industry through government advocacy, training, member services, etc.
www.esaweb.org

ESPA – Electronic Systems Professional Alliance
Training and certification for entry-level technicians. US only. ESPA Certified EST credential.
www.espa.org
ETA – Electrical Training Alliance
Affiliated with IBEW and NECA, the electrical training Alliance provides education materials for the electrical industry. Services include instructor training resources, regionalized curriculum, and advanced learning technologies.
www.electricaltrainingalliance.org

ETA-I – Electronic Technicians Association International
A not-for-profit association supporting the technical professional through vocational and education curriculums, books, publications, certification programs, conferences, speaking engagements, and businesses’ resource initiatives.
www.eta-i.org

IBEW – International Brotherhood of Electrical Workers
The IBEW represents approximately 750,000 active members and retirees in the U.S. and Canada working in a variety of fields, including utilities, construction, telecommunications, broadcasting, manufacturing, railroads, and government. As union members, IBEW bargains collectively with employers over wages, benefits, and rights.
www.ibew.org

infoComm International / AVIXA
Serves the commercial systems industry with events, training, certification, and standards. CTS, CTS-I and CTS-D certifications.
www.infocomm.org www.avixa.org

ISA – International Society of Automation
Founded in 1945, the International Society of Automation is a leading, global, nonprofit organization with more than 40,000 members worldwide. ISA develops standards, certifies industry professionals, provides education and training, publishes books and technical articles, and hosts conferences and exhibitions for automation professionals
www.isa.org

NACTEL – National Coalition for Telecommunications Education & Learning
The National Coalition for Telecommunications Education & Learning (NACTEL) is a 501 (c)(3) non-profit corporation. Members of the NACTEL Executive Board of Directors include telecommunication employers and labor unions representing employees in the industry.
www.nactel.org

NAHB – National Association of Home Builders
NAHB strives to protect the American Dream of housing opportunities for all, by supporting its more than 140,000 members who build communities, create jobs and strengthen our economy. About one-third are home builders and remodelers and the rest work in closely related specialties such as business services, finance, manufacturing and supplying building materials.
www.nahb.org

NECA – National Electrical Contractors Association
NECA represents the entire electrical contracting industry that brings power, light and communication technology to buildings and communities across the U.S. with innovative research, performance standards progressive labor relations, and workforce recruiting and training.
www.necanet.org

NSCA - National Systems Contractors Association
Serves the commercial systems industry through events and resources aimed at business owners and management.
www.nsca.org

QUEST - Quality Urban Energy Systems of Tomorrow
A non-profit organization that conducts research, engagement and advocacy to advance Smart Energy Communities in Canada.
www.questcanada.org
APPENDIX B: PUBLICATIONS

American School and University: http://asumag.com
Appliance Design: http://www.applianceDesign.com
ASHRAE Journal: https://www.ashrae.org/resources-publications/periodicals/ashrae-journal
BACnet International Journal: http://www.bacnetinternational.org/page/journal
CABA iHomes and Buildings Magazine: https://www.caba.org/CABA/News/Magazine/CABA/Resources/Magazine_iHomesandBuildings.aspx
CE Pro: www.cepro.com
Commercial Integrator: www.commercialintegrator.com
Consulting Specifying Engineer: http://www.csemag.com
Contracting Business: http://contractingbusiness.com
Contractor: http://contractormag.com
Control Engineering: http://www.controleng.com
CTA Publications: https://www.cta.tech/News/Annual-Publications.aspx
EC&M: http://ecmweb.com
Electrical Contractor: http://www.ecmag.com
Engineered Systems: http://www.esmagazine.com
HPAC Engineering: http://hpac.com
HVAC Talk: http://hvac-talk.com/vbb
IoT for Engineers: http://www.cfemedia.com/iiot-for-engineers
Innovation & Tech Today: www.innotechtoday.com
ISA – Building Controls: www.isa.org/standards-publications
LonMark Magazine: http://www.lonmark.org/news_events/Magazine
Mission Critical: http://www.missioncriticalmagazine.com
Oil & Gas Engineering: http://www.oilandgaseng.com
Plant Engineering: http://www.plantengineering.com
PM Engineer: http://www.pmengineer.com
Pure Power: http://www.csemag.com/PurePower
Realcomm Edge Magazine: https://realcomm.com/realcomm-edge
Residential Systems: www.residentialsystems.com
SDM, Security, Distributing and Marketing: www.sdmmag.com
Security Dealer & Integrator: www.securityinfowatch.com
Security Sales & Integration: www.securitysales.com
Security Technology Executive: www.securityinfowatch.com
Security: www.securitymagazine.com
Smart Home: http://www.sdmmag.com
Systems Contractor News: www.avnetwork.com
Technology Integrator: www.technologyintegrator.net
The Retail Observer: www.retailobserver.com
APPENDIX C: INDUSTRY RESEARCH SOURCES

Numerous firms provide research on different areas of the building and home automation industry. Many also offer educational programs aligned with their research programs and make executive summaries and white papers available.

Argus Insights, Inc.: www.argusinsights.com
BSRIA: www.bsria.co.uk
Continental Automated Buildings Association, CABA: www.caba.org
Compass Intelligence, LLC: www.compassintelligence.com
EPRI, Electric Power Research Institute: www.epri.com
Frost and Sullivan: www.frost.com
Harbor Research, Inc.: www.harborresearch.com
IHS Markit: www.ihs.com
James Brehm & Associates: www.jbrehm.com
Ken Wacks Associates: www.kenwacks.com
Lux Research Inc.: www.luxresearchinc.com
Machina Research: www.machinaresearch.com
National Institute of Building Sciences, NIBS: www.nibs.org
National Research Council Canada, NRC: www.nrc-cnrc.gc.ca
Navigant Research: www.navigant.com
New Buildings Institute, NBI: www.newbuildings.org
NGL Nordicity Group Ltd.: www.nordicity.com
Parks Associates: www.parksassociates.com
POCO Labs: www.pocolabs.com
Research into Action: www.researchintoaction.com
Strategy Analytics, Inc.: www.strategyanalytics.com
APPENDIX D: IB/CH INDUSTRY TRAINING RESOURCES

AEE – Association of Energy Engineers

See Detailed Listing in Appendix E: Examples of Industry Education and Training

Algonquin College

See Detailed Listing in Appendix E: Examples of Industry Education and Training

APT College

See Detailed Listing in Appendix E: Examples of Industry Education and Training

ASHRAE – American Society of Heating Refrigeration and Air Conditioning Engineers

This large buildings industry association provides hundreds of educational programs to their members on all things related to buildings.

www.ashrae.org

https://www.ashrae.org/education-certification

Automated Buildings

An online magazine and web resource that provides the news and connection to the community of change agents creating smart, intelligent, integrated, connected, green, and converged large buildings.

www.automatedbuildings.com

Automated Logic’s EIKON for Educators

A version of Eikon LogicBuilder for Educators is available free of charge to educators, consulting engineers, and other professionals who want to use one of the industry’s most powerful control system design tool.

Barry Career and Technical Education Center

See Detailed Listing in Appendix E: Examples of Industry Education and Training

Bedrock Learning

Dedicated to the connected and smart home, Bedrock offers online courses based on the technologies behind the products to build a solid knowledge foundation for technicians, designers, sales personnel, and anyone interested in learning about the industry.

www.bedrocklearning.com

BEST Center, Building Efficiency for a Sustainable Tomorrow

Located at Laney College in Oakland, California, BEST Center promotes better building performance through the advancement of building science and technician education. Sponsored by National Science Foundation’s Advanced Technological Education program, this national collaboration encompasses over 60 two-year community and technical colleges, plus universities and industry partners. Together, they support faculty professional development and advanced educational programs in commercial heating, ventilation, air conditioning, building automation, and energy management.

www.bestctr.org

BOMA Canada

A non-profit association of property owners and managers in the commercial real estate industry. In cooperation with BOMI Canada, BOMA Canada has an initiative to develop a Building Operator Certification program.

www.bomacanada.ca/

http://bomacanada.ca/education/

BOMI Canada

An educational institute that provides training for property and facility managers offering designations and certifications for property management, facility management, and building operators.

https://www.bomicanada.com/

British Columbia Institute of Technology

See Detailed Listing in Appendix E: Examples of Industry Education and Training
CareerOneStop
The flagship career, training, and job search website for the U.S. Department of Labor. The website serves job seekers, businesses, students, and career advisors with a variety of free online tools, information and resources.
https://www.careeronestop.org/

Central Nine Career Center Adult Education
See Detailed Listing in Appendix E: Examples of Industry Education and Training

CIET – Canadian Institute for Energy
See Detailed Listing in Appendix E: Examples of Industry Education and Training

College of DuPage
See Detailed Listing in Appendix E: Examples of Industry Education and Training
Lab tour: https://www.youtube.com/watch?v=YKkB1AvpVgg&t=212s

College of the Desert
www.collegeofthedesert.edu/

Commscope Academy
Offers courses for installers, integrators, designers in a wide variety of trade topics including building automation. Link: https://www.commscopetraining.com/catalog/search/?q=smart+buildings

ETA-International
See Detailed Listing in Appendix E: Examples of Industry Education and Training

George Brown College
See Detailed Listing in Appendix E: Examples of Industry Education and Training

Georgia Piedmont Technical College
See Detailed Listing in Appendix E: Examples of Industry Education and Training

Heartland Community College
See Detailed Listing in Appendix E: Examples of Industry Education and Training

HeatSpring
Source for paid industry training. Offers courses accredited by AIA for CEU (Building Automation).
https://www.heatspring.com/app/courses?subject=Building%20Automation

ICEBO – International Conference on Enhanced Building Operation
Sponsored by Texas A&M University - (they have not been too active for a few years due to change in personnel but still some good content on their website)
https://icebo.tamu.edu/

InfoComm / AVIXA
See Detailed Listings in Appendix E: Examples of Industry Education and Training

Columbia College
Valencia College
Full Sail University
Benjamin Franklin Institute of Technology
City College of San Francisco
Sheffield Institute for the Recording Arts

ISA – International Society of Automation
ISA has a wide range of on-line and instructor led certificate based training courses. They are globally recognized for the Standards they develop including the latest for Building Controls Systems. They also have a Division specifically for Building Automation.
www.isa.org
Lambton College – Sustainable SmartHouse
The Sustainable SmartHouse is part of the Lambton Energy Research Centre (LERC) at Lambton College. It serves as an educational facility, testing laboratory and research facility that enables investigation of the intermittency issues associated with renewable energy systems, industrial and home automation, energy management and optimization, end-use hydrogen and fuel cells. It is open to anyone in the industry interested in technology development in sustainable energy; students, facility and the public.
https://www.lambtoncollege.ca/About_Us/Centres/Energy_Research_Centre/Home/

Lane Community College
Offers an Energy Management Program and uses its Downtown Campus building and systems to teach building automation, HVACR, and energy efficiency.
https://www.youtube.com/watch?v=Q6WoalOgy0&t=62s

Laney College – Building Automation Systems (BAS)
See Detailed Listing in Appendix E: Examples of Industry Education and Training

Lincoln Technical Institute
See Detailed Listing in Appendix E: Examples of Industry Education and Training

LonMark Building Automation Program
See Detailed Listing in Appendix E: Examples of Industry Education and Training

LonMark Free Educational Seminars
Over 100 presentations with PDF and MP3 recordings from 10 years of industry events. Topics include: Building Automation, Smart Cities, Outdoor Lighting, Quick Serve Restaurants, Hospital/Health Care, Cyber Security, IoT, Control Networking, Case Studies, New Technology, and much more.
www.lonmark.org/connection/presentations/

Maverick Technical Institute
See Detailed Listing in Appendix E: Examples of Industry Education and Training

Milwaukee Technical Institute
See Detailed Listing in Appendix E: Examples of Industry Education and Training

Mt. San Antonio College
See Detailed Listing in Appendix E: Examples of Industry Education and Training

NATE – North American Technician Excellence
Offers training for technicians (electricians, mechanical, pipe fitters, sheet metal, energy, utility, etc.).
www.natex.org

NSF – National Science Foundation
The National Science Foundation (NSF) is a United States independent federal agency created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense..." With an annual budget of $7.5 billion (FY 2017), NSF is the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.
www.nsf.gov

O*NET – Occupational Information Network
Developed under the sponsorship of the U.S. Department of Labor/Employment and Training Administration (USDOL/ETA), the ONET database contains standardized and occupation-specific descriptors on almost 1,000 occupations covering the entire U.S. economy and is used to facilitate the development and maintenance of a skilled workforce.
www.onetonline.org/

Orange Technical College
See Detailed Listing in Appendix E: Examples of Industry Education and Training

ProMedia
See Detailed Listing in Appendix E: Examples of Industry Education and Training
RealComm
Jim Young’s organization puts on several conferences a year. Don’t know if they record/post but worth exploring. They focus on the commercial real estate leased space market. www.realcomm.com

Red Vector
Training for the workforce – Wide variety of industry training more for the process/manufacturing industry – not know specifically for their buildings training but worthy of mentioning. www.redvector.com

Seneca College – MBT Program
See Listing in Appendix E: Examples of Industry Education and Training

Smart Building Energy Summit
Sponsored by JLL, Jones Lange LaSalle, the Building Energy Summit® is an annual conference designed to educate building owners and operators on energy efficient technologies and solutions, collaborate on best practices, share successful case studies, and provide the resources needed to take action. http://2017.buildingenergysummit.com/opalsingleevent-session/general-session/

Wharton County Junior College
See Detailed Listing in Appendix E: Examples of Industry Education and Training
APPENDIX E: EXAMPLES OF INDUSTRY EDUCATION AND TRAINING

1. AEE – Association of Energy Engineers: Atlanta, GA USA

WHO	Contractors who install these systems, building personal who operator these buildings and Trainers who can train this skill-set to both contractors and operators.
WHERE	There could be three delivery methods all covering the basic student outcomes and learning objective of the skill-sets necessary to cover and be proficient with Building Automation and that of a Knowledge-based Workforce for the Intelligent Building and Home Industries
WHEN	For this course content and that of the depth of the skills required, I would estimate that it would be an 8-12 weeks course minimum of 4-6 hours per session. There would need to be lab and relevant student experiential learning opportunities for those key topics needing hands on learning.
WHY	Benefits to the course learning objectives are that a segment of the built environment would be focused on and given attention regarding workforce training. A foundation for training will be created thus allowing for additional add-on learning as newer concepts, technologies and operational best practices are identified and documented for learning purposes. This effort will result in the improvement of Building Automation Systems while also increasing the on-going assurance of energy efficiency accuracy in systems. Lastly, the Building Automation Market is exploding. It is estimated and projected to be a 99-billion-dollar market by 2022.
2. Algonquin College: Nepean, ON Canada

<table>
<thead>
<tr>
<th>WHO</th>
<th>Students registered in the Electrical Engineering Technology Program during their third year can take as the elective course ELE8968 – Building Automation Systems (BAS).</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>The three-year Electrical Engineering Technology program at Algonquin College prepares students to design and specify electrical equipment, systems and components. Technology students choose either an “automation” stream that emphasizes microelectronic control systems, or specialize in a “utilities” stream which focuses on elements of protection and control, and the design of transmission and distribution power systems. ELE8968 - BAS course is a third-year elective course - part of the requirements for the Electrical Engineering Technology Program. EET credentials after completion (3 years) is: Ontario College Advanced Diploma</td>
</tr>
<tr>
<td>WHERE</td>
<td>At the Algonquin College of Applied Arts and Technology, in the Electrical Engineering Technology program, one of the new courses being introduced in the automation stream is Building Automation Systems (BAS) ELE8968 - BAS course is an elective course.</td>
</tr>
<tr>
<td>WHEN</td>
<td>The ELE8968 – BAS is a third-year elective course offered during the winter section (Jan. to April) in the EET program.</td>
</tr>
<tr>
<td>WHY</td>
<td>BAS relates closely to the emerging field of the Intelligent Homes and Buildings. In this course, various topics related to BAS are covered, where students are introduced to the main components of BAS. Many technical aspects of automation including smart thermostats, Heating Ventilation and Air Conditioning (HVAC), lighting, access and security, measuring, sensing, actuation and digital controls are covered. The Internet of Things (IoT), Ambient Intelligence (AmI) concepts, real-world applications of wireless sensing/actuating devices and data acquisition systems (DAQ), as an important aspect of building automation, are introduced. In the lab, students design, build, test and troubleshoot various building automation components and subsystems. BAS course is tailored for the students interested in pursuing their careers in “automation” i.e., building automation systems.</td>
</tr>
<tr>
<td>For More Information</td>
<td>www.algonquincollege.com</td>
</tr>
</tbody>
</table>
3. APT College: Carlsbad, CA, USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Telecommunications and electric power industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td></td>
</tr>
</tbody>
</table>
Associate Degree in Telecommunications Technology
Associate Degree in Information and Communications Technologies
Associate Degree in Electric Power Systems
Associate Degree in Renewable Energy
Professional Certificate in Telecommunications Technology
Professional Certificate in Telecommunications Essentials
Professional Certificate in Wireless Essentials
Professional Certificate in Fiber Optics Essentials and Advanced Applications
Professional Certificate in IP Network Essentials
Professional Certificate in Advanced IP Network Applications
Professional Certificate in Electrical Fundamentals
Professional Certificate in Transmission Fundamentals
Professional Certificate in Transmission Operations
Career Certificate in Renewable Energy |
| WHERE | The APT College curriculum is designed using a multimodal approach that includes online (asynchronous and webcast) as well as on ground classes. Our classes are available worldwide via the internet or local instructors available across the United States. |
| WHEN | APT College has rolling admissions and is available anytime. |
| WHY | APT has achieved several endorsements related to industry certifications that we offer within our programs to assure you of its commitment to dependable excellence in curriculum quality, instructional delivery and administration. Industry certifications provide students assurance that the courses meet industry standards in hands-on skills training and verify demonstrated learning outcomes. |
| For More Information | www.aptc.edu |
4. Barry Career and Technical Education Center: Westbury, NY USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>High school students seeking immediate employment after graduation or a jump start on post-secondary technical training.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Program covers copper and fiber infrastructure, telecommunications, and home technology integration. Students are offered the ESPA Certified EST certification exam.</td>
</tr>
<tr>
<td>WHERE</td>
<td>Joseph M. Barry Career and Technical Education Center (Barry Tech) is part of New York state’s BOCES network of schools, is located in Westbury NY and serves central Long Island.</td>
</tr>
<tr>
<td>WHEN</td>
<td>Traditional school year calendar. Offered to high school juniors and seniors.</td>
</tr>
<tr>
<td>WHY</td>
<td>Students are prepared to go right to work in the electronic systems industry, including audio/video, cable, satellite, and security. They can also qualify for up to 11 credit hours at Queensboro Community College.</td>
</tr>
</tbody>
</table>
5. British Columbia Institute of Technology: Burnaby, BC Canada

WHO	The program welcomes students with specified degrees, diplomas, red seal, BCIT’s Sustainable Energy Management Advanced Certificate (SEMAC) program completion, or 20 years of related experience. Since the sector is quite diverse it is important to offer multiple entry options. The detailed entry requirements are provided here: http://www.bcit.ca/study/programs/5095adcert#entry
WHAT	The program is offered by: the British Columbia Institute of Technology, School of Construction and the Environment [www.bcit.ca/bcem Advanced Certificate in Building Controls and Energy Management](http://www.bcit.ca/bcem) (BCEM). This program is designed as a part time studies program for those involved in all phases of a building’s life: design, construction, commissioning, and ongoing operation. The aim of this program is to supply industry with graduates who can use controls and building automation systems to improve energy efficiency.
WHERE	British Columbia Institute of Technology – Burnaby, British Columbia, Canada. However, this a fully online program so it can be accessed anywhere in the world.
WHEN	The program has been running since September 2016 and accepts a cohort of students every September. The program is 1.5 years or 2.5 years long (student's choice) part time online. Student attend live online lectures every Tuesday night and the remainder of the material is covered on the student’s own time following the assignment, quiz, and final project or exam deadlines.
WHY	The need for this program is driven by changes that are rapidly unfolding in the controls and building automation industry. Of particular importance is the effect that building controls and automation can have on the successful implementation of energy saving measures in buildings. Energy management cannot be successful without a strong understanding by all industry participants, from Facility Operators to Power Engineers to Commissioning Agents, of the way that controls can be optimized and used to improve energy management. Changes in technology are making building control systems more complex. Energy saving projects are becoming dependent on a strong user understanding of controls and how these new highly automated buildings are developed for energy savings. Our primary industry partner for this program, BC Hydro, has identified energy management and controls education as fundamental to meeting their energy saving targets. The proposed credential will be important to industry stakeholders because the convergence of the energy management and controls industries that has been happening in the field has not yet been linked in training and education. Often, individuals may specialize in one field or the other but not both. This combined field is now growing as more high-performance buildings are being constructed. An additional driver is the advent of "connected" buildings, with data from formerly isolated systems being integrated and sent to the internet cloud for third party analysis and diagnostics. The management and use of such data is becoming an important element for multiple professionals and stakeholders to inform decision making in building management.

For More Information www.bcit.ca/bcem
6. Canadian Institute for Energy Training (CIET) / International Institute for Energy Training (IIET): Toronto, ON CANADA

WHO we Train	Energy managers in the industrial, building and public services sectors; Project Engineers; Building Recommissioning service providers; Building operating staff; Engineering professionals; Building/Facilities Operators; ESCO and Utilities employees; Employees responsible for EE program evaluation and operation; Energy Auditors; Energy performance contracting professionals; New and seasoned professionals alike from the industrial, commercial and the public sectors.
WHAT we Train	We offer Certification programs: Advanced Course on Building Recommissioning; Building Operator Certification; Certified Building Commissioning Professional; Certified Energy Auditor; Certified Energy Manager; Certified Measurement and Verification Professional; Certified Professional in Energy Performance Contracting; Certified RETScreen Expert. We also offer a variety of short thematic training on subjects related to energy and building management, as well as e-learning around issues related to regulations and climate change.
WHERE	Offered Across Canada by CIET, and available internationally through the IIET. We have trained over 7,000 professionals
WHEN	Our courses are offered in a variety of formats, including: 1) Public training courses, as advertised in our Fall and Winter calendars; 2) On-Site training, offered at our client's office or facility; 3) Customized education, according to client needs and delivery model; 4) E-Learning, either self-directed modules on via live webinars.
WHY	The Institute specialises in high quality energy management and energy efficiency training, as well as certification programs. Energy efficiency is by far the fastest, easiest and most logical way to fight climate change. CIET is therefore proud to have been a leader in this field for 20 years and counting.

For More Information www.cietcanada.com

7. Central Nine Career Center Adult Education: Greenwood, IN USA

WHO	Career changers, especially those who have been identified by a government unemployment/retraining agency for specialized training and placement into a new career.
WHAT	Adult education offering, offered two nights a week for 10 weeks, allowing participants to work during the day while training. Curriculum directly supports the ESPA Certified EST credential.
WHERE	Central Nine Career Center, Greenwood IN. This program is part of their adult education department.
WHEN	Launched March 2017 and lasts 10 weeks.
WHY	Provides an opportunity to learn the basics, earn an industry certification, and get into a new career quickly. The school, government agency, and trade associations all help to ensure their employment after completion of the program.

8. College of DuPage: Glen Ellyn, IL USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>The program is targeted to those interested in Building Automation Systems and Energy Management Systems in the greater Chicagoland area.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>The Credential earned will be a Building Automation Systems (BAS) Certificate. The certificate will include at least two types of controllers that will be integrated together and used on real world equipment. The students will learn how a miniaturized central plant can be controlled with BAS equipment. There are two different platforms of programming, along with a look into how BAS equipment can be used for energy management in buildings.</td>
</tr>
<tr>
<td>WHERE</td>
<td>The classes are offered during the fall and spring semesters at The College of DuPage.</td>
</tr>
<tr>
<td>WHEN</td>
<td>The program starts Fall 2017 and can be finished in about a year. This certificate requires 37 credits in the courses.</td>
</tr>
<tr>
<td>WHY</td>
<td>The Building Automation Systems (BAS) Certificate prepares a student for entry level building automation and energy controls technician careers. The program is also offered to existing professionals who wish to develop into high performance building technicians.</td>
</tr>
<tr>
<td>For More Information</td>
<td>http://cod.edu/programs/hvacr/ https://www.youtube.com/watch?v=YKkB1AypVqq&t=212s</td>
</tr>
</tbody>
</table>
9. College of the Desert: Palm Desert, CA USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Students interested in the advanced energy, construction, utilities sector. Adults and Incumbent workers wanting to upskill to current (CA) Title 24 energy efficiency standards or Zero Net Energy practices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>The Building and Energy Systems Professional, Associate of Science Degree offers students a broad overview into the energy efficiency, green technology, and building science industry and includes cross disciplinary courses in Energy Conservation Methods, Renewable Energy (generation and storage), Energy Systems, Heating Ventilation and Air Conditioning, Construction Management, Architecture, Computer Information Systems, Building Inspection Technology, Commissioning, Energy Consulting/Auditing, Building Operations, Lighting, and Controls. The completion of the Building and Energy Systems Professional, AS degree, is especially advantageous for the student in pursuit of an advanced energy industry leadership position. Electives are selected to support a concentration on industry specialties that are in high demand and stackable with other credentials and certificates. Students will have the option to focus on particular advanced energy sectors by choosing from various depths of study, such as, Alternative Energy Systems, Building Control and Environmental Systems, Advanced Lighting Systems, Building Analysis, Construction, and Inspection within the Zero Net Energy (ZNE) related fields. The student may choose their electives based on their immediate educational needs and goals. The student may also continue completing additional elective courses, combining other defined certificates (specialties) within the BESP Degree program. Upon completion students will have the technical background necessary to achieve multiple industry recognized credentials and careers.</td>
</tr>
<tr>
<td>WHERE</td>
<td>The program is currently offered at College of the Desert for 10 out of 15 of the individual certificates; it will be offered as the BESP Associate of Science degree program in the Spring of 2018.</td>
</tr>
<tr>
<td>WHEN</td>
<td>There are four entry points per year in the Spring, Summer, Fall, and Winter sessions. The classes are 8-weeks long with students taking two complimentary courses in each half of the 16-week semester, except summer and winter when only two entry level courses are available.</td>
</tr>
<tr>
<td>WHY</td>
<td>The goal for the Building and Energy Systems Professional, Associate of Science Degree (BESP) is to provide the student with the entry level skills, knowledge, and industry driven competencies to successfully enter and succeed in the Building Science and Advanced Energy Systems fields. The competencies are met through industry recognized (valued) credentials (IRC’s) specifically related to each specialty (see Appendix B). The BESP specialties and their related IRC’s are: Alternative Energy Technician/NABCEP, CSPV-I, CPVT-S Building Operator/BPI, NCI Green HVACR Commercial Technician/NATE, HVAC Excellence, EPA 608, BPI, NCI Green HVAC Residential Technician/NATE, HVAC Excellence, EPA 608, BPI, NCI Control Systems Specialist/NCI, GBA Advanced Lighting Technician/CALCTP-AT Building Energy Consultant/CEA, HERS, BPI, CABEC Construction Manager/CSLB, LEED-AP Building Inspector/PBI, ASHI Commissioning Technician/ACG, BPI, CABEC, CxT Zero Net Energy Technician/LEED-GA, NCI, BPI</td>
</tr>
</tbody>
</table>
Power Generation and Distribution/NECA/IBEW
Applied Construction Technology/CSLB
Water Technology/SCATA
Welding Technology/AWS
Incumbent Workers (Skills Builders)
The TAACCCT funded BESP program includes non-credit offerings for all students including incumbent workers at no tuition cost. These courses are designed to help workers elevate their skills and gain knowledge about ZNE and energy efficiency practices and methods.
Non-Credit Certificates (in Progress)
1. Solar Photovoltaic
2. Energy Storage
3. Welding
4. Air Conditioning
5. Commercial Qlty. Maint. (Standard 180)
6. Energy Systems Technology
7. Industrial Calculations
8. Employability Skills
9. Residential Heat Pumps Certificate
10. Building Automation Controls Certificate
11. Commercial Gas Heating Certificate
12. Residential Gas & Heating Certificate
13. Residential HVACR Certificate
14. Commercial HVACR Certificate
15. Building Inspection Tech Certificate

For More Information
www.COD2Careers.com
collegeofthedesert.edu
<table>
<thead>
<tr>
<th>WHO</th>
<th>Students, Military, Entry level technology personal, Trainers, Experienced Professionals, Those involved in a degreed program leading to certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Certification programs used by schools to validate training and provide an industry credential include these areas: Certified Electronics Technician Associate, Residential Electronics Systems Integrator, Audio/Video, Fiber Optics, Commercial Audio, Distributed Antenna Systems, Communications, Alarm and Security Systems, CCTV and Renewable Energy</td>
</tr>
<tr>
<td>WHERE</td>
<td>Offered at any of the over 1,000 schools approved to provide ETA certification</td>
</tr>
<tr>
<td>WHEN</td>
<td>Depending on the program and the training group, the content provided may result in ETA certification testing. This can range from a short, entry-level training in fiber optics installation, leading to a certification credential and being employable, to a two or four-year University degreed program.</td>
</tr>
<tr>
<td>WHY</td>
<td>Working with various industry organizations such as Automation Federation both industrial and residential certification is provided to those who complete training with the over 1,000 schools and training groups who currently work with ETA. This is in the form of competencies at various industry skills and knowledge levels of certification attainment. Certification is often required as a prerequisite for hiring or contract negotiations.</td>
</tr>
<tr>
<td>For More Information</td>
<td>www.eta-i.org</td>
</tr>
</tbody>
</table>
11. George Brown College: Toronto, ON Canada

WHO	Students wishing to continue their education at the post-secondary education level. Graduates* with diploma/degrees from colleges/universities that want to specialize in Building Automation. *Students may qualify for advanced standing and graduate in 1 year.
WHAT	Electromechanical Engineering Technology – Building Automation Program (T171) Specialization in building automation is an emerging and growing employment opportunity, especially in the construction and property development sector. This advanced diploma program will provide the skills and knowledge in areas such as building science, building automation systems, networking and system integration.
WHERE	George Brown College, Casa Loma Campus, Toronto, Ontario
WHEN	3-Year, 6 Semesters, Post-Secondary program Semester 1 registration begins: September 2017 and January 2018
WHY	Builders and property managers require people to design and integrate technologies such as lighting, communications, security, Programmable Logic Controllers (PLC), Heating Ventilation and Air-Conditioning (HVAC), air quality monitoring, energy consumption and fire and safety equipment. They need technologists familiar with a centralized approach who can manage and control a building from an interface that provides building-wide efficiency, cost-effective operations and information sharing. Graduates from this program have been hired by companies like Siemens, Cisco, Mircom Group, Oxford Properties, Angus Property Management, Reliable Controls SPA, Modern Niagara and others.
12. Georgia Piedmont Technical College: Clarkston, GA USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>High school and traditional college students; existing building, HVAC, or controls technicians; veterans and career changers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Building Automation Systems (BAS) is a two-year community college program offering: 1) Diploma or 2) Associate of Science Degree options. The diploma includes 50 units of classes while the degree option also requires completion of general education classes for a total of 67 units. All of the Building Automation specific classes are hybrid (online and in-person).</td>
</tr>
<tr>
<td>WHERE</td>
<td>The program is offered in Clarkston, GA at the main GPTC campus.</td>
</tr>
<tr>
<td>WHEN</td>
<td>Offered annually on a rolling admissions basis (we take new cohort groups twice a year), the program is designed to be completed in four semesters (two years) by a full-time student.</td>
</tr>
<tr>
<td>WHY</td>
<td>GPTC’s BAS program was one of the first to be established at a community college in the U.S. The Air Conditioning Technology and Commercial Refrigeration programs complement the BAS program, which has implemented Living Lab pedagogy so students learn by working on an actual campus building. Siemens, Triatek, Emory University, McKinney’s, United Maintenance, and Jones Lang LaSalle are some of the local employers who benefit from hiring BAS graduates.</td>
</tr>
<tr>
<td>For More Information</td>
<td>http://www.gptc.edu/content.cfm?PageCode=programgroup&ProgramGroupID=37 https://www.youtube.com/watch?v=0qioOL4onLk</td>
</tr>
</tbody>
</table>

13. Heartland Community College: Normal, IL USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Traditional and Non-Traditional Students.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Industrial Technology Certificate 30 credit hours and Renewable Energy Skills Certificate 19 credit hours</td>
</tr>
<tr>
<td>WHERE</td>
<td>Heartland Community College – 1500 W. Raab Rd. Normal, Illinois 61761 Traditional Classroom</td>
</tr>
<tr>
<td>WHEN</td>
<td>Program starts fall term.</td>
</tr>
<tr>
<td>WHY</td>
<td>These certificates are part of a stacked certificate program with emphasis on fundamentals for entry level job opportunities in automation, building and industrial settings. This program has the opportunity for an internship in the field.</td>
</tr>
<tr>
<td>For More Information</td>
<td>http://www.heartland.edu/catalog/industrial</td>
</tr>
</tbody>
</table>
14. InfoComm/AVIXA – Benjamin Franklin Institute of Technology: Boston, MA USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Students of secondary education; adult learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Associate Degree in Computer Technology with concentration in AV Technology – students will learn ins and outs of AV technologies, installation, networked systems, and system design processes and documentation.</td>
</tr>
<tr>
<td>WHERE</td>
<td>Benjamin Franklin Institute of Technology, Boston, MA</td>
</tr>
<tr>
<td>WHEN</td>
<td>66 credit hours full-time – 4 semesters</td>
</tr>
<tr>
<td>WHY</td>
<td>Program provides students with knowledge and training for a range of positions in information technology, based on the specific course selections of the student. Students have their choice of different concentrations of courses from modern areas of computer technology. Graduates of the various options may be qualified, respectively, for entry-level positions in system administration, computer programming, web development or database management, as well as positions as computer support specialists, and network or PC repair technicians. Graduates are also well prepared to continue their education in four-year BS programs in networking, computer science or system administration.</td>
</tr>
<tr>
<td>For More Information</td>
<td>http://www.bfit.edu/our-programs/computer-technology/av-technology/av-technology</td>
</tr>
</tbody>
</table>

15. InfoComm/AVIXA – City College of San Francisco: San Francisco, CA USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Students of secondary education; adult learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>AV Technician Certificate program - City College of San Francisco, Laney College, and Diablo Valley College are collaborating to offer a regional pathway to InfoComm/AVIXA's Certified Technology Specialist certificate, an audiovisual professional credential. The Audiovisual Technologist Certificate Program will prepare students for the Certified Technology Specialist (CTS®) exam and entry-level jobs in the audiovisual industry.</td>
</tr>
<tr>
<td>WHERE</td>
<td>City College of San Francisco, San Francisco, CA + Laney College, Peralta, CA -</td>
</tr>
<tr>
<td>WHEN</td>
<td>2018</td>
</tr>
<tr>
<td>WHY</td>
<td>Students will be able to analyze and apply the science and technology of basic audio and video equipment installations, and audiovisual systems integration. Graduates will gain skills in set up, testing, and troubleshooting audio systems, video systems, and AV technologies on a network. This Regional Certificate is offered by Laney College in Oakland’s Peralta CCD and City College of San Francisco. Some courses are offered at City College and some at Laney and others have choices that can be taken at either college.</td>
</tr>
<tr>
<td>For More Information</td>
<td>https://www.ccsf.edu/</td>
</tr>
</tbody>
</table>
16. InfoComm/AVIXA – Columbia College: Chicago, IL USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Students of secondary education; adult learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Course teaching fundamentals of audiovisual design and integration – as part of BA, BS degree</td>
</tr>
<tr>
<td>WHERE</td>
<td>Columbia College Chicago – Audio Arts and Acoustics program</td>
</tr>
<tr>
<td>WHEN</td>
<td>Fall – Spring - year calendar – 120 credit hours (8 semesters); Full-time status at Columbia College Chicago is 12 through 16 credits per semester</td>
</tr>
<tr>
<td>WHY</td>
<td>Specialize in live and recorded sound design, engineering and production/post-production; environmental and architectural acoustics for public, commercial and residential spaces; and design and management of audiovisual installations. Choose courses which focus on the specific techniques, technologies and aesthetics of the music industry and/or of sound, and become familiar with both large-format recording studios and desktop environments. You’ll also study the science and physiology of sound and hearing.</td>
</tr>
</tbody>
</table>

17. InfoComm/AVIXA – Full Sail University: Winter Park, FL USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Students of secondary education; adult learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Show Production – Bachelor of Science (B.S.) - Program focuses on the various components that go into creating concerts, live shows and corporate presentations, from lighting to sound design, and how audiovisual technologies play a key role in great live experiences.</td>
</tr>
<tr>
<td>WHERE</td>
<td>Full Sail University, Winter Park, FL – Music and Recording department and online</td>
</tr>
<tr>
<td>WHEN</td>
<td>Accelerated degrees. 20 months. Contains seven one-credit Career Modules that are woven throughout the curriculum</td>
</tr>
<tr>
<td>WHY</td>
<td>The university's recording arts bachelor's degree program centers on live music production and audio postproduction. Through this partnership, both programs will now offer InfoComm/AVIXA’s Essentials of AV Technology course, Certified Technology Specialist™ (CTS®) Prep course and exam, and AV Technologist exam. In addition, Full Sail students will have free access to attend InfoComm/AVIXA’s North America show and can attend three workshops free while there.</td>
</tr>
<tr>
<td>For More Information</td>
<td>https://www.fullsail.edu/degrees/show-production-bachelor</td>
</tr>
</tbody>
</table>
18. InfoComm/AVIXA – Sheffield Institute for the Recording Arts: Phoenix, AZ USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Students of secondary education; adult learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>TechWorks - teaches students the foundational skills they need to find work as audiovisual technicians and AV installers.</td>
</tr>
<tr>
<td>WHERE</td>
<td>Sheffield Institute for the Recording Arts, Phoenix, MD</td>
</tr>
<tr>
<td>WHEN</td>
<td>Typical full-time class is four days a week, four hours per day, 16 hours per week for 27 to 30 weeks. Part-time is two days a week, four hours per day, eight hours per week for 50 to 53 weeks.</td>
</tr>
<tr>
<td>WHY</td>
<td>Graduates will be qualified to apply for entry-level employment in the fields of audiovisual systems integration and maintenance, among others.</td>
</tr>
</tbody>
</table>

19. InfoComm/AVIXA – Valencia College: Orlando, FL USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Students of secondary education; adult learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Entertainment Design and Technology Associate of Science (A.S.), Sound and Music Technology Associate of Science, and more: two-year program preparing students to go directly into a specialized career in the entertainment industry. Specializations available in Live Show Production and Production Design</td>
</tr>
<tr>
<td>WHERE</td>
<td>Valencia College, Orlando, FL – Arts and Entertainment</td>
</tr>
<tr>
<td>WHEN</td>
<td>64 credit hours: Full-time – 2 to 3 years; Part-time – 3 to 4 years</td>
</tr>
<tr>
<td>WHY</td>
<td>This program is one of only a handful in the country, and the only one in Central Florida that trains students to work in all facets of the entertainment industry. From designing and constructing scenery to rigging and operating lighting, and audiovisual equipment, you'll gain hands-on experience working on real Valencia productions. When you graduate, you'll have the skills you need to work independently or as part of a creative team to produce live shows for concerts, theater, theme parks and corporate events.</td>
</tr>
</tbody>
</table>
20. Laney College - Building Automation Systems (BAS): Oakland, CA USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>High school and traditional college students; existing building, HVAC or controls technicians; veterans and career changers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Building Automation Systems (BAS) is a two-year community college program offering: 1) Certificate or 2) Associate of Science Degree options. The certificate includes 48 units of classes while the degree option also requires completion of general education classes for a total of 66 units.</td>
</tr>
<tr>
<td>WHERE</td>
<td>The program is offered in Oakland, California at Laney College (part of the Peralta Community College District). Laney is the only local community college with a BAS program and controls lab in the nine-county San Francisco Bay region.</td>
</tr>
<tr>
<td>WHEN</td>
<td>Offered annually on a rolling admissions basis, the program is designed to be completed in four semesters (two years) by a full-time student.</td>
</tr>
<tr>
<td>WHY</td>
<td>Laney has a two-year Commercial HVAC certificate/degree program, and a number of courses are common to both BAS and HVAC programs. Thus, BAS graduates will also possess a solid foundation in HVAC. In fact, some HVAC students have stayed longer to take the additional BAS classes in order to earn a second degree. For many local employers (e.g. Siemens, Honeywell), this is a very desirable combination of knowledge and skills because it reduces the amount of on-the-job training, and graduates find themselves quickly hired as entry-level technicians.</td>
</tr>
</tbody>
</table>

21. Lincoln Technical Institute: Union, NJ USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>High school grads, career changers, and veterans who want to become Electronic Systems Technicians (entry-level and above)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>11-month comprehensive training which includes extensive hands-on activities. Introduces students to a variety of subsystems, all from the technician’s perspective. Some locations also offer an associate’s degree option which covers management fundamentals. All Students earn NCCER certificate and have the opportunity to sit for the ESPA Certified EST certification.</td>
</tr>
<tr>
<td>WHERE</td>
<td>Lincoln Institute of Technology (Lincoln Tech) offers their EST program in six locations: Chicago IL, Indianapolis IN, Atlanta GA, Columbia MO, Union NJ, and Mahwah NJ. Some locations offer night classes.</td>
</tr>
<tr>
<td>WHEN</td>
<td>Classes have staggered starts, so no formal semester structure, and there are people graduating all times of the year.</td>
</tr>
<tr>
<td>WHY</td>
<td>This program is very comprehensive and focused on the EST as one of the trades on the jobsite. It covers a wide variety of systems so graduates are prepared to work in a number of verticals, as well as advance rapidly or move to another discipline.</td>
</tr>
</tbody>
</table>
22. LonMark Building Automation Program: Santa Clara, CA USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Integrators, designers, operations personnel, maintenance personnel, property owners, property developers</th>
</tr>
</thead>
</table>
| WHAT | Building Automation Course includes modules:
 * Introduction to Smart Buildings
 * Smart Building System Design and System Integration
 * Fundamentals of Building Open Control Networking Systems
 * Specifying Building Automation Systems
 * Introduction to Designing Building Automation Dashboards, User Interfaces, and Public Kiosks
 * Smart Buildings and the Smart Grid
 * Introduction to LonWorks
 Credentials available include:
 * LonMark Building Automation Course Certificate of Completion
 * LonMark Refresher Course Certificate of Completion
 * LonMark Certified Professional Credential (after passing the Exam) |
| WHERE | All courses are available online, anytime, from anywhere |
| WHEN | Self-paced, online modules
 20-30 hours for all modules of the *LonMark Building Automation Course*
 6 hours for the *LonMark Refresher Course*
 2-hours allowed for the *LonMark Certified Professional Exam* |
| WHY | Accomplishment of *LonMark Building Automation Course* provides *Certificate of Completion*
 Accomplishment of *LonMark Refresher Course* provides *Certificate of Completion*
 Pass the *LonMark Certified Professional Exam* to earn the Credential
 Earn Continuing Education Units, CEUs, for the American Institute of Architects, AIA
 Excellent credential for a Resume
 NOTE: This program/credential may be a specified requirement to bid on construction project |
| For More Information | www.lonmark.org/training
 https://test.lonmark.org
 Portions of the program are also available through partners:
 https://www.commscopetraining.com/catalog/search/?q=smart+buildings

© Continental Automated Buildings Association 2017
Published: October 2017
23. Maverick Technical Institute: Nashua, NH, USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Target audience is high school grads who wish to go into the electronic systems industry with a broad understanding of the technologies and subsystems, and do not want to pursue a typical 2 or 4-year degree.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>10-month program focused on the fundamentals and real-world skills needed to be valuable on the job from day one. Topics include basic electronics, subsystems, networking fundamentals, programming, equipment installation and jobsite professionalism. Credentials offered include ESPA and CEDIA certifications. CompTIA exams may be offered in future sessions</td>
</tr>
<tr>
<td>WHERE</td>
<td>MTI is located in Nashua NH, and serves southern NH and the Boston area.</td>
</tr>
<tr>
<td>WHEN</td>
<td>Launched in 2016, this program is offered in approximately the format of a school year, starting in the fall and completing in the spring. The next session will begin in September 2017.</td>
</tr>
<tr>
<td>WHY</td>
<td>This program was built specifically to meet the huge demand for technicians in the residential systems industry and is being taught by industry professionals who know exactly what skills will be needed on the job. The school is well-connected to the industry and students are highly likely to have positions waiting for them when they graduate.</td>
</tr>
</tbody>
</table>
24. Milwaukee Area Technical College: Milwaukee, WI USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>High school and traditional college students; existing building, HVAC or controls technicians; veterans and career changers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Automated Building Systems (ABS) is a diploma program that takes two full-time semesters to complete. It targets training students to meet the level 1 technician training of control vendors. There are 11 courses totaling 25 credits. The students have the option of taking an internship course for 1 credit. Started in fall 2016, the program is building enrollment. The college is looking at adding certificates and eventually expanding to multiple diplomas or an associate’s degree. Once enrollment is strong, more classes will be added to allow for specialization, expanded certificates and degrees.</td>
</tr>
<tr>
<td>WHERE</td>
<td>The program is offered at the MATC South Campus, Center for Energy Conservation and Advanced Manufacturing (ECAM) Center in Oak Creek, WI. It is possible that portions of classes could be online in the future but most classes are lab formats requiring hands on.</td>
</tr>
<tr>
<td>WHEN</td>
<td>Each fall the program starts, and courses are completed in sequence culminating with the diploma in the spring semester. Not all courses have prerequisites so that part timers can focus initially on courses that do and pick up those that don’t over time. Courses are a mix of day and night classes with the intent being all classes will rotate into the evening at least once every two years. All classes at this point are only offered once a year. As enrollment builds, that will change.</td>
</tr>
<tr>
<td>WHY</td>
<td>The benefits upon completion (having only had one cohort complete the program) is that the students all obtained jobs in the field. This program already has several classes that are integrated with sheet metal apprenticeships and power engineering programs. It allows for a direct tie with a major control vendor, Johnson Controls (JCI). JCI is also conducting some of their courses at ECAM as well as having hired one of the first three graduates last spring. Potential local employers include JCI, Trane, Milwaukee Public Schools, contractors, operators and consultants.</td>
</tr>
<tr>
<td>For More Information</td>
<td>Program website: http://www.matc.edu/tas/diplomas/automated-building-systems.cfm</td>
</tr>
</tbody>
</table>
25. Mt. San Antonio College: Walnut, CA USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>High school and traditional college students; existing building, HVAC or controls technicians; veterans and career changers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Building Automation Systems (BAS) is a two-year community college program offering: 1) Certificate or 2) Associate of Science Degree options. The certificate includes 36.5 units of classes while the degree option also requires completion of general education classes for a total of 60 units.</td>
</tr>
<tr>
<td>WHERE</td>
<td>The program is offered at the Walnut, CA campus.</td>
</tr>
<tr>
<td>WHEN</td>
<td>The program is designed to be completed in 2-3 semesters by a full-time student. Most courses are offered only once per year.</td>
</tr>
<tr>
<td>WHY</td>
<td>Mt. SAC’s BAS program originally started under a Dept. of Labor grant and was one of the first to be established at a community college in the U.S. The Air Conditioning and Refrigeration Technology program complements the BAS program. Local employers meet students at an annual Industry Night event, which helps to facilitate hiring.</td>
</tr>
<tr>
<td>For More Information</td>
<td>Program website - http://www.mtsac.edu/buildingautomation/</td>
</tr>
</tbody>
</table>

26. Orange Technical College: Orlando, FL USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>High school seniors and graduates who have already completed at least two semesters of computer technology and networking, and wish to apply these skills in the dynamic electronic systems, building automation industry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>Single semester elective to be offered as an advanced enhancement to the current IT program, opening up a whole new array of career verticals. Students have already earned CompTIA A+ and Net+ certifications. In the semester, they will add ESPA and CEDIA certifications.</td>
</tr>
<tr>
<td>WHERE</td>
<td>Orange Technical College, Orlando FL is part of a five-location network of non-profit technical schools serving central Florida. Orlando will be the first location to offer the Electronic Systems Integration course.</td>
</tr>
<tr>
<td>WHEN</td>
<td>This new program is being built now and will be offered in 2018. It is a one semester program offered only to students who have already completed two semesters of IT.</td>
</tr>
<tr>
<td>WHY</td>
<td>IT has quickly become a critical element of all installed electronic systems, both commercial and residential. The combination of networking skills and the fundamentals of electronic systems (and the industry credentials) will make these students highly sought after upon graduation.</td>
</tr>
<tr>
<td>For More Information</td>
<td>https://www.orangetechcollege.net/Pages/default.aspx</td>
</tr>
</tbody>
</table>
27. ProMedia Training: Fort Lauderdale, FL USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Career changers, high school grads, recently displaced workers, and veterans who want a fast track into an entry-level technician role within the electronic systems industry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>This is a concentrated “fast-track” program which covers only the fundamentals needed to get right to work, and then learn and advance while on the job. The training and hands-on exercises directly support the ESPA certification, and no advanced topics.</td>
</tr>
<tr>
<td>WHERE</td>
<td>ProMedia Training has been offering ProTools audio production training in multiple markets for many years and will be launching this EST program in 2017 in three locations initially: Los Angeles, Atlanta, and Miami. The session is five full days long, taught by industry professionals, and includes all of the critical hands-on cable termination and testing skills as well as prep for the exam.</td>
</tr>
<tr>
<td>WHEN</td>
<td>Scheduled to begin in Q2 of 2017.</td>
</tr>
<tr>
<td>WHY</td>
<td>For individuals who need to get to work quickly, without a long commitment to technical training, this provides an opportunity to learn the basics, earn an industry certification, and have both the school and trade associations working to get them into the workforce in an entry-level position.</td>
</tr>
</tbody>
</table>
28. Seneca College – MBT Program: North York, ON, Canada

<table>
<thead>
<tr>
<th>WHO</th>
<th>Students registered in the Mechanical Engineering, Building Sciences Technology (MBT) Program during their third year take a course BGI561 – Intelligent and Integrated Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>The three-year Mechanical Engineering Technology, Building Sciences program at Seneca College is the only program of its kind that prepares students to work with engineers, architects, and building operating staff in delivering the highest standards of green building design and operation. The program features a specialized third year to the Building Systems Engineering Technician program, providing students with enhanced opportunities for an exciting Green Career with emphasis in energy solutions and Intelligent and Integrated Buildings. BGI561 - Intelligent and Integrated Buildings course is a third-year course - part of the requirements for the Mechanical Engineering Technology, Building Sciences program. MBT credentials after completion (3 years) is: Ontario College Advanced Diploma</td>
</tr>
<tr>
<td>WHERE</td>
<td>At Seneca College, in the Mechanical Engineering Technology, Building Sciences program, one of the advanced courses being introduced in the Building Sciences stream is Intelligent and Integrated Buildings BGI561 - course is a required professional course.</td>
</tr>
<tr>
<td>WHEN</td>
<td>The BGI561 – Intelligent and Integrated Buildings BGI561 - course is offered during the fall section (September to December) in the MBT program.</td>
</tr>
<tr>
<td>WHY</td>
<td>This course contains an introduction to networking essentials including the OSI model, network architectures, IP addressing and Ethernet/WLAN networking technologies. It then introduces networking technologies specific to the operation of Intelligent and Integrated Buildings (IIB) such as ZigBee wireless networking, ECHELON and BACnet. The application of these networking technologies is explored in the lab by the configuration and operation of several wired/wireless networking devices in order to demonstrate how they integrate with IIB and the course is tailored for the students interested in pursuing their careers in “automation” i.e., building automation systems with emphasis in energy solutions and Intelligent and Integrated Buildings (including operations).</td>
</tr>
</tbody>
</table>
29. Wharton County Junior College: Wharton, TX, USA

<table>
<thead>
<tr>
<th>WHO</th>
<th>Recommended for those individuals who have a desire to pursue a career in architectural residential design as an apprentice or trainee.</th>
</tr>
</thead>
</table>
| WHAT | ENGINEERING DESIGN PROGRAM - Architectural Design Level II Certificate and Associate of Applied Science Degree - Engineering Design
Course utilizes Autodesk REVIT, which create residential plans in 3D.
This program provides students with learning experiences in computer-aided design, architectural (residential) design, and structural design. Certificate course of study may also be applied to Associate of Applied Science Degree in Engineering Design |
| WHERE | Wharton County Junior College, Wharton and Richmond, Texas campuses |
| WHEN | Post-secondary 16-week college credit course is offered both Fall and Spring semesters. Registration begins August 2017 and November 2018. |
| WHY | Specialized learning experiences include the implementation of computer-aided design software in various design disciplines. Instruction emphasizes the development of technical knowledge and drafting skills that are essential to the successful entrance in the job market as a design technician. Former students have been employed as pipe designers, architectural designers, tool designers, civil designers, structural detail designers, electrical designers, and job estimators. The Engineering Design program provides workplace experiences recommended by the U.S. Department of Labor Secretary’s Commission on Achieving Necessary Skills (SCANS). |
| For More Information | www.wcjc.edu/programs |
APPENDIX F: ESPA FLYER – WHY PURSUE A CAREER IN ELECTRONIC SYSTEMS

WHY PURSUE A CAREER IN ELECTRONIC SYSTEMS?
An Introduction to the Industry

Technology and the World We Live In
Take a look around at today’s world, compared to just a decade ago. The iPhone was launched in 2007, and now mobile access to virtually any kind of information is something we all take for granted. The internet is ubiquitous. It has changed the way we communicate, get our entertainment, and share our lives with others. The internet has given birth to the “Internet of Things” (IoT), which means eventually every device that plugs in or has batteries will be part of a huge ecosystem that shares information and control with the other devices. And we are all part of it.

There is no end in sight for this technology take-over, no expiration date, no expectation that the growth will slow down. So, doesn’t it make sense to be looking at careers that are tied directly to this technology?

It has been suggested that today’s younger generation has a mindset which will motivate them to change jobs often, in their pursuit of new challenges and ways to really “make a difference”. I can say from many years in the electronic systems industry that nobody I know has ever been bored. The new challenges come on an almost daily basis, as new ideas, technologies, and applications are introduced constantly. And very few things have as big an impact on a client than providing capabilities they never knew were possible, in a way that is easy for them to control and enjoy.

What Do We Mean by “Electronic Systems”?
Of course, the term “electronic systems” could be applied to many applications, from aerospace to manufacturing. But in general, when we use the term we are referring to low voltage devices and subsystems, installed in buildings, and integrated to be easily controlled as if they are all one larger system. A similar concept is found in an automobile: Dozens of sophisticated sub-systems are integrated together and presented to the drive in such a way that they are no longer really thought of as separate, but rather as one integrated machine. There are two main areas where these systems are found; in the home, and in businesses and public spaces.
The actual technologies and components are mostly the same but are applied differently in each area of the industry. Systems common to both include the wiring infrastructure, audio and video distribution, security and surveillance, and access control. In the home, we find media rooms and home theaters, voice and mobile control, and some specialized functionality related to pools, driveways, shades, etc. In commercial applications we find digital signage, conference rooms, biometrics, video walls, large scale sound reinforcement, and other types of system monitoring, control, and automation.

In short, the electronic systems industry is all about using technology to providing solutions, sometimes extremely complex solutions, in a way that is stunningly easy for the end user to access and control.

What Are the Jobs? Where Are the Jobs?
Like in any industry, there are various types of workers doing different types of work. There are technicians, engineers, designers, project managers, programmers, sales people, and more. And the companies are not limited to any geographical area. This work is done everywhere in the country, in fact everywhere in the world. So, finding a job in a new location is not a problem.

The most important point, however, is that the demand for qualified people has never been higher. Virtually every employer in the industry is looking for people to add to their team, not only as entry-level technicians but in more advanced roles as well.

How Fast Can I Advance?
One of the most attractive things about working in this industry is how rapidly someone can make themselves more valuable and move into new positions with new responsibilities. In fact, a large percentage of people doing the more advanced work (engineering, design, programming) started as entry-level technicians and move up rapidly, by doing a good job and always seeking new knowledge and skills.

What Skills are Needed?
Every position requires a different skill set, but they all need to start with the fundamentals used by an entry-level EST (Electronic Systems Technician). Then these basics provide the foundation on which other knowledge is based. These areas of knowledge include: basic electricity, building methods and materials, tools (including documentation), cabling practices (including termination and testing of the most common
cable types), and safety/codes/standards. Along with these basics, a comprehensive training path (school or self-study) should also include an introduction to audio, video, control systems, and several other subsystems which are commonly encountered in the field. Then the path to advancement includes on-the-job experience and additional training to be ready for the next career steps.

An advanced EST fully understands the configuration and functionality of a system and is able to troubleshoot problems, supervise other technicians, and solve complex installation issues. A designer knows how to properly specify a system to meet the needs and budget of the client. An engineer can document precisely how everything is connected and configured. A programmer takes all of this information and sets up the control system to seamlessly control everything easily and dependably. All of the technical positions require an understanding of electronic equipment and computer networking. Project managers track all of the resources and labor over the life of the project to ensure success and profitability. Sales people work directly with the client to assess needs and ensure their satisfaction. In small companies, a few people may each wear more than one hat. In larger companies, there may be even more specific job descriptions. In all cases, EST fundamentals and a general understanding of subsystems are the required starting point. And a solid background in computer networking is a HUGE advantage, as all of these systems now depend on the network, or mobile devices, in one way or another.

Where Do I Start?

Due to the strong demand for technicians, and the increased outreach to schools by industry associations, more and more career centers and tech schools are incorporating the EST essentials and ESPA certification into existing electronics and computer courses. There are also a number of brand new programs being built and launched which cover not only the ESPA basics but the full introduction to electronic systems. These programs range from one semester to two years.

Another training model which is being launched is a “fast-track” type session, which involves 40-60 hours of instructional time, including the required hands-on activities to ensure that the new EST can perform basic tasks on the jobsite. These may be in a 5 day “basic training” format or delivered as night classes over several weeks. The outcome is similar: introduction to just the ESPA body of knowledge, some hands-on experience, and the opportunity to earn the EST certification.... followed by a well-coordinated effort to find employment for every successful participant. If there is no school or training program available in your area, it is possible to study the ESPA Training Guide, learn to terminate and test cables, and sit for the exam on your own, although this is the least ideal scenario. There are also self-paced online courses available to enhance the content in the book. In order to be more prepared for actual employment we also highly recommend the Fundamentals of Residential Electronic Systems book from CEDIA. With or without their ESC certification, this knowledge will be extremely valuable regardless of what sector of the industry you go to work in. It serves as an introduction to most of the technologies and subsystems you will be working with once in the industry.

Who is ESPA? What Does the Certification Tell Potential Employers?

Industry certifications send a clear message to employers. This is true in any field. It proves that the candidate:
- has studied the content and mastered at least the key points
- takes training and learning seriously enough to make the effort to earn a credential
- wants to stand out among applicants as the one who has proven their knowledge
- will be more likely to continue to learn, grow, and earn higher credential once on the job

In some areas of work, certain certifications are mandatory, but in electronic systems this is usually not the case, other than some areas which require a low-voltage license. However, the best companies are usually the ones who encourage and look closely at industry and manufacturer training and certification when they hire and promote people. The ESPA certification is intended to be the first step to get to work. After that it is expected that you will pursue higher certifications which are specific to the segment of the industry you have chosen.

Where Can I Learn More?
The ESPA website (www.espa.org) serves as a single point resource which helps you find more information in a number of places. Go to the TRAINING RESOURCES tab, and click through to links which take you to several associations, publications, online training, and job boards. Thoroughly exploring these links will give you a very broad introduction the industry, what systems integrators do, what today’s technologies look like, and how you might fit in. If you have additional questions, ESPA is always eager to help. Just reach us at certification@espa.org.
APPENDIX G: ESPA UPDATE – ELECTRONIC SYSTEMS INDUSTRY WORKFORCE

ELECTRONIC SYSTEMS INDUSTRY WORKFORCE UPDATE
OCTOBER 2016

INTRODUCTION
The same rapid changes in technology that have impacted everyone’s daily life over the past decade or two have also brought extraordinary change in the systems which deliver entertainment, functionality, energy efficiency, and security to buildings - from single family homes to skyscrapers, hotels, and multi-use venues. This has resulted in a huge demand for skilled personnel in a wide range of positions, in an industry most people are not even aware of. This document is intended to bring some clarity to what the industry does, how it is growing, and the demand for qualified workers.

DEFINITION OF TERMS
By definition, electronic systems could include just about anything that plugs in or has batteries. There are electronic systems in automobiles and aircraft, and even spacecraft. But in general, the term is applied to low voltage systems and subsystems installed in buildings. Not to be confused with the work done by electricians, this includes low-voltage technologies such as audio, video, control systems, security and surveillance, and the infrastructure that supports these systems – copper, fiber optic, and wireless. Much of the same technology is applied to both residential and commercial projects, but used differently depending on the application. The companies who design and install these complex systems are essentially integrating several subsystems into one, so you will often see them referred to as systems integrators. The personnel who install, service, and upgrade these systems in the field are known as Electronic Systems Technicians (ESTs).

CAREERS

The career paths are diverse, and go well beyond the ESTs in the field. Like any technical industry, there are a variety of skillsets needed to make a project happen; from sales to designers, engineers, project managers, and programmers. All of these are specialized, but all rely on a similar fundamental body of knowledge. And many of these positions are filled by people who started out as entry-level technicians and advanced by learning and gaining experience within the industry.

INDUSTRY GROWTH

Although electronic systems are often retrofitted into existing structures or installed as part of a remodel/refurbish project, most of the growth is related to the growth in new construction. In the U.S. this has been rapid in the last few years. Housing starts are estimated to be 1.2 million in 2016, the highest since before the recession, and overall installed home technologies are annually around $20 billion. This is due to a number of factors, including new entertainment technologies, the widespread use of mobile devices, and the concept of “aging in place” as baby boomers retire. Commercial new construction, and therefore the electronic systems, are seeing similar growth rates, and in fact was not hit as hard as residential during the recession, mostly due to the longer project cycles. Growth is especially strong in education and health care.
These trends are global, and the U.S. is leading the way, especially in residential systems, where “smart home” revenues are expected to triple by 2021. We are also seeing a lot of crossover between various types of contractors, i.e.: residential integrators doing more light commercial, and security companies doing more audio, video, and control.

DEMAND FOR QUALIFIED WORKERS

In each of the last two years, both commercial and residential integrators reported that they expect their staffing to increase an average of 14% per year. These additions are in all types of positions. During the recession, the biggest challenge faced by integrators was generating sales. Now in the last few years the challenge has been finding the people to do the work. Industry associations have turned their attention to helping member companies identify qualified candidates, and every major association we know of has started initiatives to raise awareness in the academic channel and promote programs which train people to work in the industry.

Due to the shortage of talent and increased workload, compensation has seen a solid upward trend. Most commercial integrators will be awarding pay increases of 5-8% across the board this year, the highest increases reported since 2005. Residential integrators report even higher compensation increases, averaging 10% from 2013 to 2015. The average annual base compensation for an experienced EST (commercial and residential) is $44,000 to $48,000, and most are seeing a lot of overtime as well as incentive pay. Entry-level technicians start out lower but can advance very quickly. Engineers, designers, and programmers earn more, and many of them started their career as entry-level technicians.

NEXT STEPS

Most of the “hot” career paths for the 21st century are well known, such as health care and IT. But not so with the electronic systems industry. So, a concerted effort is being undertaken to make young people aware of the exciting and rewarding careers available. NSCA’s Education Foundation has launched an initiative known as Ignite, to “spark interest in technology” among high schoolers. Other associations are also reaching out to various demographics, such as career changers and veterans, to let them know of the opportunities that are abundant in the industry.

The Continental Automated Building Association (CABA) is currently developing a white paper which will better define the skills and knowledge needed for various careers, and make recommendations to the academic channel on how to prepare people for these positions.
The Electronic Systems Professional Alliance (ESPA) offers training resources and an industry-recognized certification for entry-level ESTs regardless of which of the career verticals they pursue. This can be dropped into an existing electronics or IT program as an enhancement, offered as a free-standing “fast track”, or used as the foundation of a more comprehensive electronic systems program which also includes a broad introduction to the technology and terminology of the industry. This should include all of the subsystems someone will need to understand when they go to work, regardless of what role they take on. CEDIA offers the Fundamentals of Residential Electronic Systems book, which complements the ESPA basics by introducing topics such as audio, video, control, security, and home theater. Some additional content should be included to cover disciplines unique to the commercial side, such as conference rooms and digital signage. The ideal outcome of a comprehensive program is for the student to be prepared to enter any sector of the electronic systems industry with a solid set of skills that will shorten their learning curve on the job and allow them to advance quickly. Holding certifications from ESPA and CEDIA will greatly assist them in gaining employment. In addition, since today’s systems are so dependent on the network, training and certification in computers and networking (such as CompTIA A+ and Net+) makes a candidate even more attractive.

CONCLUSION
The electronic systems industry is growing rapidly and changing constantly. A career in this field offers great potential for advancement, and a work environment that will always be challenging as new technologies are introduced. The current demand for qualified employees is higher than ever, and a well-trained and certified individual is virtually assured of immediate employment. Every major market has at least 100 potential employers eager to identify qualified applicants.

The ESPA program was founded by three leading industry associations (NSCA, CEDIA and CTA) and is also recognized by ESA, CABA and CompTIA.

For more information, www.espa.org or certification@espa.org.
APPENDIX H: INFOCOMM INT’L/AVIXA FAST FACTS A/V TECHNICIANS 2017

FAST FACTS

AUDIO AND VIDEO EQUIPMENT TECHNICIANS

- **Total Number of Full-Time and Part-Time Audio and Video Technician Jobs**
 - **70,415**

- **Increase**
 - **2.4%**

- **Median Earnings**
 - **$20.13/hr**

- **25% of Audio and Video Technicians Make Over**
 - **$26.94/hr**

- **Top Industries Employing Audio and Video Equipment Technicians (2016)**
 - **Motion Picture and Video Production**: 11,172 Jobs in Industry, 15.9% Occupation in Industry
 - **Promoters of Performing Arts, Sports, and Similar Events With Facilities**: 6,631 Jobs in Industry, 9.4% Occupation in Industry
 - **Television Broadcasting**: 3,311 Jobs in Industry, 4.7% Occupation in Industry

- **2016 Regional Breakdown (Jobs)**
 - **California**: 15,263 - 22%
 - **Illinois**: 2,425 - 3%
 - **New York**: 6,963 - 10%
 - **Texas**: 4,477 - 6%
 - **Florida**: 4,217 - 6%

- **Occupation Age Breakdown**
 - **19-24**: 23.3%
 - **25-34**: 29.1%
 - **35-44**: 20.6%
 - **45-54**: 12.3%
 - **55-64**: 2.8%
 - **65+**: 1.2%

Online Job Postings

- **6.5% Increase in Average Monthly Online Job Postings from 2015-2016**

- **In 2016, there were 2,741 average monthly unique online job postings for Audio and Video Equipment Technicians.**

- **In 2015, there were 2,879 average monthly unique job postings for Audio and Video Equipment Technicians.**

- **That’s a 6.5% increase in online job postings.**

- **6,120 Audio and Video Equipment Technicians Hired Per Month**

- **In an average month, from 2015-2016, there were 2,741 unique job postings for Audio and Video Equipment Technicians, and 6,120 actually hired.**

- This indicates that one job posting may be intended to fill multiple Audio and Video Technician job roles, or that Audio and Video Technicians are typically hired by channels other than online postings.

Top Cities Posting with Job Title Audiovisual Technicians

- **New York, NY**
- **Los Angeles, CA**
- **Washington, DC**
- **Chicago, IL**
- **San Francisco, CA**

Top Companies Posting for Audio and Video Equipment Technicians

- **PSAV Presentation Services**
- **Encore Event Technologies**
- **AVMS (Audio Visual Meeting Solutions)**
- **J&S Audio Visual**
- **Five-Star Audio/Visual**

Skills and Certifications

Top Occupations

- Audio and Video Equipment Technician
- AV and Multimedia Collections Specialists
- Producers and Directors
- Broadcast Technicians
- Sound Engineering Technicians

Unique Skills

- Live Sound Mixing
- Lighting Production and Direc
- Sound Rendition Enthusiasts
- Stage Lighting
- Audio Editing Software

Top Certifications

- Certified Technology Specialist - Design
- Certified Technology Specialist – Installation
- Certified Technology Specialist
- Project Management Professional

Economic Modeling Specialist International data aggregator (EMSI) and InfoComm International® – April 2017

Visit us at www.infocomm.org/marketresearch

© Continental Automated Buildings Association 2017

Published: October 2017
Explore Something New in 2017

<table>
<thead>
<tr>
<th>Role</th>
<th>Key Topics</th>
<th>Certification</th>
<th>CTS Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installer</td>
<td>Quick Start to the AV Industry Follow® Essentials of AV Technology*</td>
<td>AV Technology (CTST)</td>
<td>CTS Prep®</td>
</tr>
<tr>
<td>Designer</td>
<td>Quick Start to the AV Industry Follow® Essentials of AV Technology*</td>
<td>AV Technology (CTST)</td>
<td>CTS Prep®</td>
</tr>
<tr>
<td>IT Professional</td>
<td>Quick Start to the AV Industry Follow® Essentials of AV Technology*</td>
<td>AV Technology (CTST)</td>
<td>CTS Prep®</td>
</tr>
<tr>
<td>Technology Manager</td>
<td>Quick Start to the AV Industry Follow® Essentials of AV Technology*</td>
<td>AV Technology (CTST)</td>
<td>CTS Prep®</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Quick Start to the AV Industry Follow® Essentials of AV Technology*</td>
<td>AV Technology (CTST)</td>
<td>CTS Prep®</td>
</tr>
<tr>
<td>Business Development Manager</td>
<td>Quick Start to the AV Industry Follow® Essentials of AV Technology*</td>
<td>AV Technology (CTST)</td>
<td>CTS Prep®</td>
</tr>
<tr>
<td>Live Events Professional</td>
<td>Quick Start to the AV Industry Follow® Essentials of AV Technology*</td>
<td>AV Technology (CTST)</td>
<td>CTS Prep®</td>
</tr>
</tbody>
</table>

*For more information on the Quick Start to the AV Industry Follow® Essentials of AV Technology, please visit the Continental Automated Buildings Association (CABA) website.

INFOCOMM INTERNATIONAL/CAREER TRAINING MATRIX 2017

Customize your training — or training for your whole organization — with one-on-one guidance, infocomm.org/customerservice.

infocomm.org/education
REFERENCES

1. CONSUMER TECHNOLOGY ASSOCIATION (CTA): STATE OF THE BUILDER TECHNOLOGY MARKET 2016

2. CUSTOM ELECTRONIC DESIGN & INSTALLATION ASSOCIATION (CEDIA): BENCHMARKING SURVEY 2015

3. STATISTA DIGITAL MARKET OUTLOOK 2016

4. NATIONAL SYSTEMS CONTRACTORS ASSOCIATION (NSCA): 2015 COMPENSATION AND BENEFITS REPORT

5. NATIONAL SYSTEMS CONTRACTORS ASSOCIATION (NSCA): 2016 ELECTRONIC SYSTEMS OUTLOOK

6. CUSTOM ELECTRONIC DESIGN & INSTALLATION ASSOCIATION (CEDIA): BENCHMARKING SURVEY 2013

8. CUSTOM ELECTRONIC DESIGN & INSTALLATION ASSOCIATION (CEDIA): BENCHMARKING SURVEY 2015

9. STATISTA DIGITAL MARKET OUTLOOK 2016

10. NATIONAL SYSTEMS CONTRACTORS ASSOCIATION (NSCA): 2015 COMPENSATION AND BENEFITS REPORT

11. CUSTOM ELECTRONIC DESIGN & INSTALLATION ASSOCIATION (CEDIA): BENCHMARKING SURVEY 2013